WELCOME TO TODAY'S WEBINAR.

We will start shortly.

Today's webinar

Will be recorded

Will be available on Share

For technical issues/support, please use the Chat function in ZOOM

For questions, use the Q&A function

Questions will be answered after the presentations, but you can submit your questions throughout the webinar

New Matching Algorithm: How to interpret search results in the updated Search & Match Service

By Christine Urban

DKMS

Updated Search & Match Service

- Multi-factor Authentication
 - Individual accounts as opposed to group accounts
 - Initial credentials and source of authentication tokens
 - First steps towards future goal Single sign-on (SSO)

Updated Search & Match Service

- Multi-factor Authentication
 - Individual accounts as opposed to group accounts
 - Initial credentials and source of authentication tokens
 - First steps towards future goal Single sign-on (SSO)
- Starting a search and viewing results
 - Enter patient information manual vs API
 - View search results online vs API

Ontime Courier
Life Logistics Europe
Part of LLG

Probability of Mismatches		В	с	DRB1	DQB1	DPB1	Registry	Sex	Age	Blood group
				Patient	details					
	01:01 02:01:01	08:01:01 39:01:01	07:01:01 12:03:01	03:01:01 03:01:01	02:01:01 02:01:01	04:01:01 04:01:01				
			+9/10 (pote	ential) allele matche	s sorted by s	um of probabi	lities			
# 673	GRID: 7414DKM0001	05864812 St	atus: AV CI	MV:	No. of do	nations: 0	Ethnicity: UK			
0: 0% 1: 100 % 2: 0 %	Α	М	А	Α	Α	Pe	7414 ⊘ PL-DKMS	Male	49	A+
2. 0%	01:01:01G 02:01:01G	08:01:01G (18:01:01G)	07:01:01G 12:03:01G	03:01:01	02:01:01	(01:01:01) 04:01:01				
# 674	GRID: 635400000019 2	2406131 St	atus: AV Cl	MV: N 2010-02-24	No. of do	nations:	Ethnicity: CAEU			
D: 99 % 1: 1 %	Р	Р	Р	Р	Р		6354 ⊘ GB-ANT	Male	49	
2: 0 %	100% 01:YAG 02:ANGR	100% 08:AKNJ 39:FGMU	100 % 07:FPWT 12:AUCW	73% 03:WZF 03:APJZ	27%					

Updated Search & Match Service

- Multi-factor Authentication
 - Individual accounts as opposed to group accounts
 - Initial credentials and source of authentication tokens
 - First steps towards future goal Single sign-on (SSO)
- Starting a search and viewing results
 - Enter patient information manual vs API
 - View search results online vs API
- Filtering the results
 - Existing & new filters
 - Grouping/sorting options

Registry Accreditation status Accredited Qualified Unknown / Not Accredited Registery Select registry V Cord search filters TNC Minimum TNC CD34+ Minimum CD34+

Apply filter

Delete filters

1	CO	rd	c
- 1	-	ıu	э

Filter:

(Brackets) = mismatches (Bold) = antigen mismatches (Underlined) = allele mismatches Italics = uncertainty

Probability of Mismatches (i)	Α	В	c	DRB1	DQB1	DPB1	Registry	Sex	Age	Blood group	TNC	CD34
					Patient o	details						
	01:01 02:01:01	08:01:01 39:01:01	07:01:01 12:03:01	03:01:01 03:01:01	02:01:01 02:01:01	04:01:01 04:01:01				A+		
				10/	10 (potential)	allele matche	S					
#1 Cord ID:	: DUCB20001		CMV	: G 2011-01- 2	25 Volume	e: 24 Ethnic	ity:	Viability: 97	7 %	Attached segments:		
0: 0% 1: 0% 2: 42 %	Р	Р	Р	Р	Р		4908 O DE-DUS	Female	11	O+	117.0	4.0

Feature differences Hap-E Search vs. Optimatch

Antigen Recognition Domain explained

- The antigen recognition domain (ARD) is the binding groove of the HLA peptide. This is the region interacting with the presented antigen and T-cell receptor.
- All alleles that express the same amino acid sequence in this region are considered an allele match.
- The ARD is encoded on:
 - exon 2 & 3 for HLA class I
 - exon 2 for HLA class II

1. Null allele treatment in Hap-E search

- Null alleles are treated as absent, i.e. the second typing matches as homozygous.
- Null allele matching rules are applied to:
 - All high resolution null alleles.
 - Null alleles as part of multi allele codes if the null allele is part of a haplotype matching the donor's (patient's) HLA typing.
- Null allele matching rules are only applied to one typing of the locus.

 $02:GFJM \triangleq 02:01/02:105/02:125N$

Patient typing		Donor typing						
A*03:01, A*01:11N	matches	A*03:01, A*03:01						
A*03:01, A*01:11N	matches	A*03:01, A*02:125N						
If there is a haplotype compatible with the donor typing containing A*02:125N then								
A*03:01, A*01:11N	matches	A*03:01, A*02:GFJM						
A*03:01, A*03:01	matches	A*03:01, A*02:XX						
A*03:01, A*03:01	does not match	A*03:01, A*01:01:01G						
A*01:11N, A*02:125N	does not match	A*03:01, A*03:01						

2. Search with two mismatches

Hap-E search

The two mismatches can be on any locus.

Optimatch

Only one of two mismatches is allowed on loci A, B and DRB1. The second mismatch has to be on locus C or DQB1.

3. Donors with DNA and serologic typing

Hap-E search

Only the DNA typing information is used for matching.

Optimatch

Serological information is used as additional constraint in combination with DNA typing information for matching.

4.1 Match grades: Overview

Standard match grades

- A Allele match
- P Potential match
- M Antigen mismatch
- Allele mismatch (antigen match)

DPB1 special grades

- Allele match
- Pe Permissive mismatch
- Non-permissive mismatch in GvH direction
- Non-permissive mismatch in HvG direction
- No specification due to ambiguous or missing TCE assignment

4.2 Match grades: Differences

Hap-E search

All alleles in typings are considered.

- A Allele match:
 - Single allele or
 - Multiple alleles of the same ARD
- Potential match:
 - Multiple alleles of more than one ARD

Optimatch

Only alleles that are part of a haplotype matching the donor's (patient's) HLA typing are considered.

- A Allele match:
 - Single allele or
 - Multiple alleles of the same ARD
- Potential match:
 - Multiple alleles of more than one ARD

5. No haplotype based probability available

Algorithm behaviour if the patient / donor typing is ambiguous and has no representation in the haplotype frequency set:

No probabilities are calculated.

Optimatch

Probabilities are calculated based on allele frequencies.

6. Cord Blood search options

Hap-E Search

- Allele matched:
 - n/10, n/8 and n/6 search
 - Up to 2 mismatches
- Antigen matched:
 - Not implemented

Optimatch

- Allele matched:
 - n/10, n/8 and n/6 search
 - Up to 4 mismatches
- Antigen matched:
 - n/6 search
 Class I matched at antigen level, Class
 II matched at allele level

7. Probability display

Hap-E Search

All probabilities are rounded to integer values.

 \rightarrow 0%:

- Values 0 < p < 0.5
- No shared genotype between donor and patient.

Optimatch

Calculated values 0 < p < 0.5 are displayed as 1%.

 \rightarrow 0%:

 No shared genotype between donor and patient

8.1 Locus match probabilities in Hap-E search: Definition

- match, i.e. 10/10, 8/8 or 6/6
 - The locus match probability is the **relative probability** that this locus is a match **in** the 1 mismatch case.
- mismatch, i.e. 9/10, 7/8 or 5/6
 - The locus match probability is the relative probability that this locus is a match in the 2 mismatch case.

This probability provides information on which locus the **next mismatch** will occur.

8.2 Locus match probabilities in Hap-E search: Not displayed

In some cases the value is not defined and no locus match probability is displayed:

- match
 - when p1 = 0 (division by zero, not defined).
- mismatch
 - when p2 = 0 (division by zero, not defined).

8.3 Locus match probabilities: Example 1

8.3 Locus match probabilities: Example 2

Have your say in a quick poll!

Knowing that donor ranking and match grade is determined by the p-values, should they be displayed more prominently than the locus probabilities?

8.3 Locus match probabilities: Example 3

100%

p3+ 0%

8.3 Locus match probabilities: Example 4

Have your say in a quick poll!

How should the absence of a probability value be displayed?

Helpful resources

- WMDA Share
 - Feature comparison Matching engines
 - User Guide Search & Match Service version 2
 - MFA user guide
- Adding more features
 - Available and upcoming features
 - Vote
- Patient & Search APIs
 - API Documentation

VERY IMPORTANT!!!

You have until **31 October 2022** to transition your operations from the old to the new S&M.

Active patient cases will only be transferred to new platform upon written request.

QUESTIONS?

TODAY'S WEBINAR WAS MADE POSSIBLE THANKS TO THE GENEROUS SUPPORT OF ONTIME COURIER GMBH

Thank you for your attention

We look forward to seeing you next time!

More examples locus match probabilities

8.3 Locus match probabilities: Examples

8.3 Locus match probabilities: Examples

8.3 Locus match probabilities: Examples

