Disclaimer:

"The content of this Deliverable D1.1 represents the views of the author only and is his/her sole responsibility; it cannot be considered to reflect the views of the European Commission and/or the Consumers, Health, Agriculture and Food Executive Agency or any other body of the European Union. The European Commission and the Agency do not accept any responsibility for use that may be made of the information it contains."

D1.1 Progress report on the accuracy, quality of data in the global database.

Grant Agreement number: Project acronym: Work Package number: 881553 SAVDON WP1

Periodic report: 1st
2nd
3rd
X
4th

Period covered:

from 01st January to 31st December 2020

Organisation: LEAR: Project coordinator: Tel: E-mail: Organisation website address:

World Marrow Donor Association (WMDA) Lydia Foeken Lydia Foeken 0031 88 505 7900 lydia.foeken@wmda.info www.wmda.info

Co-funded by the Health Programme of the European Union

"This Deliverable D1.1 of an activity received funding under an operating grant from the European Union's Health Programme (2014-2020)."

Table of Contents

A	BBREVIATIONS	2
1.	. INTRODUCTION	3
	1.1 BACKGROUND	
	1.2 Requirements	3
2.	PROGRESS AND ACHIEVEMENT OF DATA QUALITY	5
	2.1 DATABASE REFACTORING OF DATA UPLOAD	5
	2.2 ALLDIFF-DIFFERENTIAL UPLOAD ENHANCEMENT	7
	2.3 Search & Match Statistic Dashboard	
	2.4 Data upload move to Azure	
	2.5 DATA DICTIONARY RFC AND XSD 2.3	
	Data Dictionary RFCs in 2020	
	XSD 2.3	
	2.6 Side-loading	
	2.7 DATA QUALITY WEBINAR	
	2.8 CONTINUE MONITORING OPTIMIZATION MADE IN 2019	
	Monthly data upload and Differential upload	
	Density Improvement in 2020	
	Density report per registry Improvement	
	Deprecated Code	
	XSD 2.2 End User Usage Status	
3.	PROJECT PLANNING FOR 2021	27
A	PPENDIX 1	
A	PPENDIX 2	43

Abbreviations

- CBB = Cord Blood Bank
- CBU = Cord Blood Unit
- CI/CD = Continues Integration/ Continues Development
- DD = Data Dictionary
- DQ = Data Quality
- HLA = Human Leucocyte Antigen
- QA = Quality Assurance
- Organisations = Donor registries or Cord Blood Banks
- RFC = Request For Change
- TNC = Total Nucleated Cell
- WMDA = World Marrow Donor Association
- XML = Extensible Mark-up Language
- XSD = XML Schema Definition

1. Introduction

In the field of hematopoietic stem cell transplantation (HSCT), with an increasingly growing number of voluntary unrelated donors globally, it is key that the data of all these donors has the highest security, accuracy and quality possible to ensure patients can be transplanted promptly and safely.

This progress report on data quality in EU Member States (D1.1 – 2020) details the process and achievements WMDA and each EU member state has made towards meeting the defined data set requirements in 2020. This report provides progress information to allow comparative analysis of progress by EU member states and will enable them to focus their efforts on areas of identified weaknesses.

1.1 Background

In April 2018, WMDA successfully upgraded the data upload system for WMDA global donor and cord blood database, which is the global service for all European transplant centres and search coordination units to find the best suitable stem cell source. The new system replaced the outdated DOT20 format with the modern XML in the upload file. After this system upgrade, over the course of 2018 and 2019, the vast majority of organisations gradually transitioned to use XML for uploads.

WMDA has recently introduced XML version 2.3 as the new data format standard but keeps supporting older versions of XML. Already the vast majority of EU records is uploaded using the XML 2.3 standard, however a significant amount of non-EU members is on older XML versions. WMDA has initiated several steps to assist member organisations move to XML 2.3.

The WMDA 2020 Standards stated all member organisations have to upload their data monthly. To handle to increased processing due to member organisations moving to more frequent data uploads, WMDA has introduced the ALLDIFF differential upload programme. This programme tracks the changes made in the new data set compared to the old file. In addition to this, WMDA has introduced the Database Refactoring Programme to make the data processing more efficient. As a result of these measures WMDA has managed to improve the efficiency drastically and decreased the processing time significantly.

To ensure future data processing security and speed, WMDA always observes the recent developments on data processing. Recently WMDA has opted to move from on-premises server hosting at a third-party hosting company to cloud hosting. WMDA has chosen for the Microsoft Azure cloud service as its new hosting service. The move to cloud computing gives similar to better performance compared to the old configuration and promises benefits for WMDA's services in the future. For example, cost savings on server capacity.

1.2 Requirements

The new XML data format significantly increases the number of data elements (fields) and adds the possibility to expand the definition to add more data elements in the future. More data may lead to more issues or during processing and the data flow from the organisation side to WMDA Search & Match system. In order to guarantee the correctness and quality of the data as well as decrease the uncertainties for

The DQ plan contains 2 scopes at the time when discussed and planned.

- Scope 1: Improve, optimize and enhance current data upload solution
- Scope 2: Investigate possible new solutions or replacement for certain parts in the data process flow for Search & Match

In 2019, DQ projects mainly focused on scope 1, improving or automating the process for QA checks, and provided reports or dashboard to help organisations or WMDA to monitor their data quality. These projects helped WMDA to quickly check and confirm the possible data upload issues and grow to an efficient process to make data available for search coordinators and transplant centres. It helped to detect data upload issues and notified registries providing data to WMDA to correct the issues in time.

In 2020, WMDA continued working on improvements to optimize the data upload. WMDA has introduced new projects and solutions for data processing tackling scope 2. Table 1 shows an overview of the requirements WMDA tackled in 2020.

Requirements	Working/ Implementation Period	Data Characteristic(s)	Scope
Optimise upload process by upgrading the database structure	Jan 2020 – Mar 2020	Timeliness Reliability	Scope 2
Allow registries/cord blood banks to submit only new and changed donor and cord blood records	Mar 2020 – May 2020	Timeliness Completeness	Scope 1
Provide a dashboard to track data quality issues	Mar 2020 – Mar 2020	Data monitor /track purpose	Scope 1
Improve reporting to registries/cord blood banks	Mar 2020 – May 2020	Data monitor /track purpose	Scope 1
Migrate data upload to a new hosting environment	May 2020 – Dec 2020	Reliability	Scope 2
Develop a new XML file format for the upload of data	Jan 2020 – Dec 2020	Completeness reliability	Scope 1

Table 1. Overview of WMDA 2020 DQ requirements

D1.1

WIIIDH			D1.1
Redesign the work process to allow more matching algorithms to be available for search coordinators	Sep 2020 – Dec 2020	Timeliness	Scope 2
Educational webinar to explain the importance of data quality	May 2020	N/A	Scope 1 ^[1]
Optimize the data upload process	Jan 2020 – Dec 2020	Timeliness Completeness Reliability	Scope 1

Small organisations do not have a data quality management system within their organisation, the DQ requirements plan helps these small organisations to improve their data internally. Part 2, Progress and Achievements of Data Quality, details how WMDA handles these set requirements.

2. Progress and Achievement of Data Quality

2.1 Database Refactoring of Data Upload

Over the past 2 years, WMDA's International Donor and Cord Blood Unit records increased by more than 15% from 31 million to 38 million records. This increase in combination with the more frequent uploads as a result of the newly implemented XML upload format, resulted in slower data processing and statistics. As the database operations has increased, the expectation is that the handling process will become even slower over time. This causes a potential risk for process failure or a system resource issue, with as outcome potential data loss. Therefore, it is of important to increase the efficiency of the upload processes. To increase the efficiency of the upload processes, WMDA has introduced the Database Refactoring Project.

The Database Refactoring Project mainly focuses on database optimisation and used table partition to replace the current huge table that holds almost 38 million records at the time of writing. Table 2 shows the improved processes and time decrease as a result of the Database Refactoring Project. The efficiency gains yielded from the Database Refactoring Projects range from 30% to 90%. Efficiency gains are in the DQ Monthly Donor Report with a time decrease from over 2 hours to less than 10 minutes.

Benefit Area	Process	Before DB Refactoring	After DB Refactoring	Time decrease
Data processing in	Data upload delete 1.5 million	3mins	2mins	more than 30%
Data Upload	Data upload delete 9 million	15 mins	10 mins	more than 30%
	Daily Data sync export in Search & Match (export csv)	15-16 mins	4 - 5 mins	more than 70%
Handle	Hourly public statistic	25 - 30 mins	6 - 7 mins	more than 70%
Statistics for Data Upload	Statistic data (z_counthistory)	15 - 20 mins	5 - 6 mins	more than 30%
	Statistic data (z_density)	80 - 90 mins	15 - 18 mins	more than 70%
	Statistic data (data upload frequency, GRID, TNC, etc.)	6 mins	4 mins	more than 30%
	DQ Monthly Donor Report (reports for all registries)	130-140mins	7-8 mins	more than 90%

2.2 ALLDIFF-Differential upload enhancement

In an effort to increase the data upload efficiency, WMDA has deployed and released the Differential Upload Service in 2020. This service enables organisations to only process changes in their records, instead of uploading a dataset of full records. Differential uploads make a great difference for especially bigger organisations as they do not have to upload their entire dataset if they send an update to the WMDA international DONOR and CBU database.

To prepare for future projects, like the Side-Loading and Multiple Searching Algorithm projects, differential upload is a key feature. The WMDA Differential Upload Survey showed that about 40% of the registries or CBBs have no plan to move to differential upload. Their activity is too low and their files are too small to benefit from a differential upload service. Therefore, WMDA will handle two types of files: full uploads and differential uploads. The combination of all these requests brings up the novel ALLDIFF project.

The ALLDIFF project mainly focusses on two areas:

- Handling all uploads as differential uploads and identify new/updated/deleted records, in order to prepare for the Multiple Searching Algorithm and Side-Loading projects.
- Keeping a history of the records in order to comply with the European data regulation

The ALLDIFF project has long-term benefits:

- Having a better overview on the records added/updated/deleted by each organisation.
- Keeping the history data to highlight the added/updated records on the match lists of search coordinators.
- Possibility to add a new feature in the Data Quality report to help registries and cord blood banks to better understand their data changes.

WMDA released the ALLDIFF in production in October 2020, with Figure 1 and Figure 2 being an overview of the monthly records changes in November 2020 for all member organisations and EU members.

Figure 1 shows that among all WMDA members there are about 920K donor records changes (new/updated/deleted), which is about 2.44% of the entire WMDA donor records. The majority of changes is a donor update with 1.72% of the entire records. The change in cord records shows a significantly higher percentage of updated records at 5.28%. A high percentage like this is rather unlogic. WMDA investigated the records and noticed that some cord blood banks had updated fields to provide more information to search coordinators. This is an achievement of educational meetings by the WMDA Cord Blood Working Group. WMDA will continue to monitor the monthly records change for a longer time to provide more accurate DORNOR/CBU changes.

Figure 1. The ALLDIFF Update Statistic of All Members VS EU Members in November 2020

Figure 2 and

Figure 3 show the percentage of organisations with a change in number of records (new/updated/deleted) over one month for Donor and CBU records. The change in records is categorised into 6 groups: no changes, 0-10, 10-100, 100-1000, 1000-5000, and larger than 5000.

For all donor records, there are about 67% of registries that have more than 100 changes in their records per month. For all newly added records, about 52% of registries added more than 100 new records, with over 20% of registries having record changes between 1000 and 5000, and 7% of registries having over 5000 record changes.

Looking at EU members, the number are even higher. There are about 84% registries that made changes of more than 100 records. In these changes, 68% of registries added more than 100 new donors. 29% of registries made between 1000 and 5000 record changes, and 6% of registries had record changes of over 5000 records. These registries are our target and WMDA hopes they can deploy weekly differential uploads, with a preference on daily uploads.

Figure 2. Percentage of Organizations with Different Number of Records Changes(new/updated/deleted) (DONOR) (Outer doughnut is data of changes records, inner doughnut is data of new records)

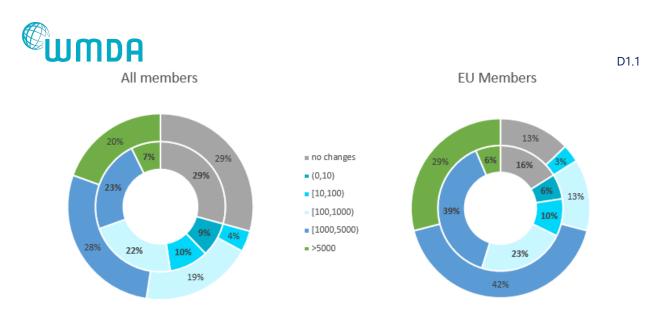
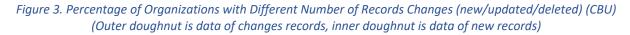
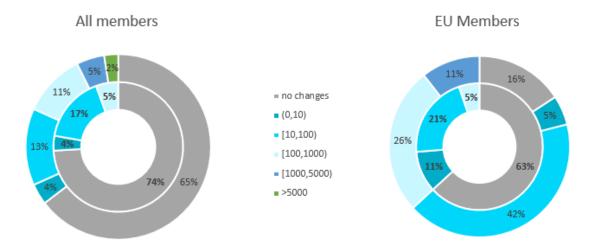




Figure 3 shows 26% of organisations are adding new records to the CBU database, with changes of 4%, 17%, and 5% in categories 0-10, 10-100, and 100-1000 respectively. EU members show a higher 37% of organisations still adding records with 11%, 21%, and 5% in categories 0-10, 10-100, and 100-1000 respectively. The amount of new CBU records added declines each year. CBBs maintain and update these CBUs, with 35% in all members, and 84% for EU members.

2.3 Search & Match Statistic Dashboard

The novel Coronavirus has impacted regular hospital activity dramatically, bringing non-COVID related healthcare down significantly. It is interesting to see how the pandemic has affected the usage of the WMDA Search & Match Service, as this directly reflects the decrease of stem cell transplantations. Table 3 shows there is a significant decrease in searches in the WMDA Database. This dip in searches is well highlighted in

Year	Sum of New Patients Added	Sum of Patient Perform Search	Sum of DR Search	Sum of CB Search	Sum of AB Search	Sum of Total Search
2016	21774	7013	6978	473	0	7451
2017	31587	32279	31797	5008	1368	38173
2018	32519	32575	32067	4883	1465	38415
2019	35326	35355	34917	4594	1220	40731
2020	28439	28381	28019	4136	755	32910
Total	149645	135603	133778	19094	4808	157680

Figure 4, where there is a significant decrease in Donor Registry searches in April and May when the first wave hit Europe and the United States.

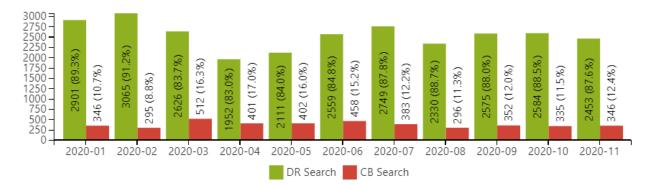

WMDA has created a dedicated page with dashboards giving insight the history and latest search statistic information of Donors and CBUs in WMDA. This dashboard is updated hourly, and an image of the dashboard can be found in appendix 3. Below are the key statistics the dashboard provides.

Table 3. WMDA Up to date Yearly Summery (till November 2020)

Year	Sum of New Patients Added	Sum of Patient Perform Search	Sum of DR Search	Sum of CB Search	Sum of AB Search	Sum of Total Search
2016	21774	7013	6978	473	0	7451
2017	31587	32279	31797	5008	1368	38173
2018	32519	32575	32067	4883	1465	38415
2019	35326	35355	34917	4594	1220	40731
2020	28439	28381	28019	4136	755	32910
Total	149645	135603	133778	19094	4808	157680

Figure 4. Monthly Search Distributions of 2020 (till November 2020)

D1.1

2.4 Data upload move to new hosting environment

Currently WMDA services are hosted in on-premises servers and the server management and updates are handled by a third-party software company. Cloud hosting has been a hot topic for quite some years. After half year investigation, WMDA analysed that the cloud hosting is beneficial because of business continuity, long-term server maintenance, performance and cost benefits. Furthermore, it provides potential better data security and privacy control. After weighing all pros and cons for moving to a cloud hosting environment WMDA has decided to move all services to Microsoft Azure.

Comparing the current popular cloud solutions Amazon AWS, Microsoft Azure, and Google cloud platform, all of them have advantages and disadvantages. Considering WMDA is using Microsoft 365 and Teams, the Azure cloud environment can benefit from that. For example, the user account and access control for software cloud resources.

The main considerations and benefits for moving to cloud hosting are listed in Table 4.

Consideration	Pros	Cons
Maintenance	Security updates are	
	automatically done by the cloud	
	hosting provider	
	Standards monitoring and	Require good defined monitoring
	logging information gives better	requirements to get useful information,
	track of resources	and consider the balance of cost
	No hardware update	
	requirement or failure issue to	
	worry about.	
Cost	Applications with paying by use	Requires effort to improve or deploy the
	of resource instead of current	resource usage strategies to guarantee
	provisioning for peak usage	the application works as the current
	Server maintenance by cloud	
	cost more or less same or can be	
	less than the current if the	
	resources are well arranged	
	Discount possible if long-term	
	contracts are negotiated.	
Application	Using Azure DevOps to	The deployment flow and concepts are
Development	standardise and simplify the	relatively new to the WMDA IT team and
	deployment process with CI/CD	relatively complex, which means it will
	(Continuous Integration/	take time to set it up correctly
	Continuous Development)	
	Once the DevOps pipeline is	
	setup for application, it saves	

Table 4. The pros and cons to move to cloud environment

	time on application implementation	
Data Security	Complex application network is more secure and can avoid hacking of all WMDA services.	Network of Application is more complex, and need be well managed. Therefore, during setup period, the support of an outsourced cloud expert is required
	Data is hosted in the cloud which always has latest update with less vulnerabilities, and can avoid data breach in time	
	The cloud data centre has dedicated experts to manage the network and resources which lessens the possibility of a data breach	
	The cloud data centre has an advanced gauging system to avoid human-made or nature disaster	
Data Privacy	Infrastructure can be hosted in Western Europe in compliance with the GDPR	

The cons in Table 4 are crucial for the application setup in Azure. Therefore, they are the main focus during the first stage of WMDA application migration to Azure process. With the support of a third-party company, a partner of Azure solution, WMDA has managed to migrate the data upload service as expected. The service is now available as development and testing environment. The performance from both the service-side and end-user side are guaranteed. A quick overview on the file upload time is visible in Table 5.

D1.1

Table 5. The time cost for data upload service in Azure(K: thousand, M: million)

File records count	First instance	Second instance	Time cost
50K	on	off	3 mins
250K	on	off	15 mins
9M	on	on	4.5 hours

The current Azure data upload solution guarantees similar to even better performance compared to onpremises servers with more or less the same cost. Microsoft Azure provides the possibility to even improve the service, because server capacity can be expanded if a large file needs to be processed. WMDA technical set up has been developed in that way to facilitate this.

In Deliverable D1.2 more details are provided.

2.5 Data Dictionary RFC and XSD 2.3

The WMDA Data Dictionary (DD) Committee was established in 2018. The key objective for this committee is to create a sustainable strategy to ensure effective implementation of Request for Changes (RFCs) by identifying best practices globally. Furthermore, the committee is responsible for the data consistency across all platforms, including: EMDIS, WMDA Search & Match and WMDA forms. Recommendations made by the committee are open to public review for a month. After DD makes recommendations, the technical group, XSD group, will further work on to update the XSD schema file with the new RFCs, and publish a new XSD version yearly.

Data Dictionary RFCs in 2020

Figure 5 is a general summary of all RFCs the DD group worked on thus far.

Figure 5. Status Overview of All DD RFCs

Title	Document Owner	Document status	RFC #	Request Date	Request Registry	Target release
RFC-001S: Update fields to allow for reporting of both antibody & NAT testing for CMV and HIV	@ user-a8583	APPROVED	RFC-001S	런 12 Jul 2017	ION-9341	XSD 2.2 (2019-11)
RFC-002S Add optional value "NA" (not available)	@ Zhihong He	REJECTED	RFC-002S	런 20 Mar 2019	WMDA	
RFC-003S Process and display "HB"(Hybrid) CBU	@Zhihong He	CLOSED	RFC-003S	런 03 May 2019	ION-9431	no xsd
RFC-004: HLA-E	@ Riny Heijdendael	APPROVED	RFC-004S	런 11 Jul 2019	ION-6939	XSD 2.3
RFC-005: MICA/MICB	@ Riny Heijdendael	APPROVED	RFC-005S	런 11 Jul 2019	ION-6939	XSD 2.3
RFC-006: KIR on allele level	@ Riny Heijdendael	IN PROCESS	RFC-006S	런 11 Jul 2019	ION-6939	
RFC-007: more fields to distinguish IDM-tests (HBV, HCV, HEV, West Nile Virus and Chagas)	@ Ying Li	IN PROGRESS	RFC-007	런 27 Nov 2019	ION-9341	
RFC-008: Introduction of banked cryopreserved stem cell product (BCS)	@ Jürgen Sauter	IN PROGRESS	RFC-008	💼 28 May 2020	ION-4596 ION-3553	XSD 2.4
RFC-009 R2sh-CBU fields request	@ Zhihong He	DRAFT	RFC-009	💼 20 Jul 2020	CBWG	XSD 2.4

The Data Dictionary Committee has been working on RFC-004 to RFC-009 in 2020, with 2 RFCs being approved before September 1st, 2020, the deadline of the XSD change request. These 2 approved RFCs for XSD 2.3 are as following:

- RFC-004: HLA-E, this RFC introduces the HLA-E related fields to allow end user to upload the HLA-E value.
- RFC-005: MICA/MICB, this RFC introduces the HLA MICA and/or MICB field to allow end user to upload MICA and/or MICB value.

XSD 2.3

The XSD group works on the remainder of the improvement left in 2019, added the new RFCs approved by the DD Committee, and developed a new XSD version 2.3. This will be used as new schema for the WMDA data upload service. The updated schema was processed and finalized and published on September 22nd, 2020 for public review and feedback from WMDA members for one month. The final version was released on 22 October 2020. The detail changes and comparisons to the current XSD 2.2 are documented and published at WMDA Share page. An image of the WMDA Share page can be found in Appendix.

WMDA implemented XSD 2.3 in November 2020 and plans to release this feature in January 2021. Considering the relatively slow transition time on the member organisation side, which can be expected from the XSD 2.2 implementation status describe in Figure 15, WMDA XSD group adjusted WMDA's initial release plan made in 2019 for XSD 2.2 to comply with the XSD 2.3 and introduced new guidelines for the development of further XSD versions. These newly defined guidelines are listed in Table 6:

Plan made in 2019	Adjusted plan in 2020 from XSD 2.3
• XSD main version like 2.1 and 2.2, will be	No change
updated and release yearly, and Q4 is	
preferred	
Small changes that have no effect to the	No change
structure are possible to be	
arranged quarterly with version	
number like 2.2.1, 2.2.2	
WMDA data upload system will always	WMDA data upload system will always
support 2 XSD versions	support 3 XSD versions
XSD transition period is one	XSD transition period is two
year for organisations	years for organisations
Organisation must implement every	Organisation can jump and ignore the
released version	version that is not necessary

Table 6. XSD update and release plan adjustment for XSD 2.3 and future release

2.6 Side-loading

Currently all record information displayed on the Search & Match Service regarding donors and cords comes from the match service OptiMas. Figure 6 shows a flowchart explaining the processing through OptiMas. Every night, all donor and cord information is exported from Search & Match data upload service and then imported to OptiMas. This has several downsides. The aim of this project is to load the donor and cord information not necessary for match algorithm directly from the WMDA data upload to WMDA search & match, so the information displayed is as up to date as possible. This is called side-loading. The proposed data flow diagram is as in Figure 7. Furthermore, side-loading is a feature dependency of the new search algorithms that WMDA are working on in 2020 and 2021. The new search algorithms can only handle the data that necessary for match algorithm and cannot handle all the other donor or CBU data NOT necessary for matching.

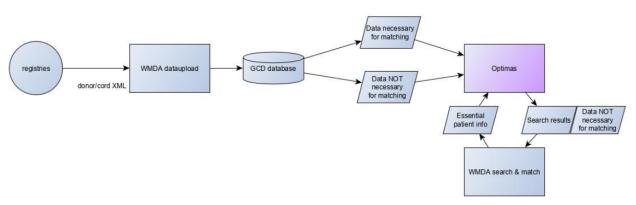
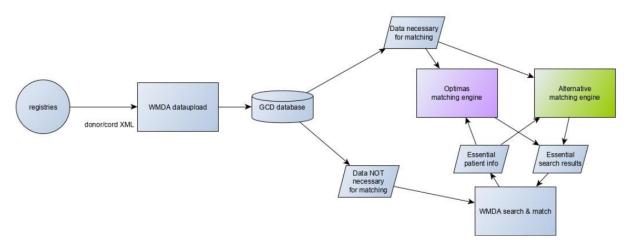



Figure 6. Current donors and cords data flow in WMDA Search & Match Service

Figure 7. WMDA Search & Match Service with Side-loading

Side-loading has multiple benefits for the search coordinators:

- They will always see the most recent information.
- There is no dependency on an external providers to deploy and handle updates of data uploads for new versions of XSD.
- The search coordinator will see updated/deleted records in their match lists.

There is really no major disadvantage of side-loading. One slight inconvenience is that the data processing will be slightly more complex compared to the current data handling process.

The side-loading project is developed with a scheduled testing release in Q1, 2021.

2.7 Data Quality Webinar

The DQ project implemented key updates and features in 2019 and 2020. Some of these updates need further attention and actions from our member organisations. In order to promote these novel features and to guide our members to implement them, WMDA hosted an educational webinar to further explain these updates. The webinar explained WMDA's DQ management circle with a six-step roadmap. This was followed up by 3 essential features for WMDA member organisations to improve their own DQ management.

The six-step WMDA DQ Roadmap is as following:

Step 1, Definition: The DD committee defines data definitions for data exchange and communication. **Step 2, Control:** Tools like the XSD scheme, HLA-core and data validation business rules improve data quality across all registries.

Step 3, **Implementation:** The data upload for Search & Match Service validate global data and make it available to the global community

Step 4, Improvement: Continuous data management is a key project within WMDA to improve data available for search coordinators every day

Step 5, Analysis: WMDA is offering tools to registries to help them improving their internal data like DQ density report and the WMDA donor statistic report.

Step 6, Assessment: Both search coordinators and WMDA have constant attention as new data get introduced.

The presentation of the webinar - Data Dictionary & Differential Uploads is provided in Appendix 1.

2.8 Continue monitoring optimization

Monthly data upload and Differential upload

Starting from 2019, WMDA introduced a guideline strongly encouraging all member organisations to have monthly uploads. In 2020, this advice was then made a membership requirement and added to the WMDA Standards 2020, which makes it mandatory for WMDA Qualified and Accredited organisations. Combined with the release of Differential Uploads in December 2019, it is expected most registries will increase the update frequency and comply with the new standards.

Figure 8 shows that as a result of the advice to upload more frequently, in the 2nd half year of 2019, over 55% of WMDA member organisations moved to monthly, weekly or even daily uploads, increasing the monthly data uploads significantly. In 2020, these organizations kept up this higher update frequency, with even more registries managing to improve their update frequency. There are 4 registries that managed to move to differential upload with daily update. Based on the data upload track per registry in the data upload dashboard, the upload frequencies are gradually increasing and reach over 700 uploads monthly as is visible in Figure 8.

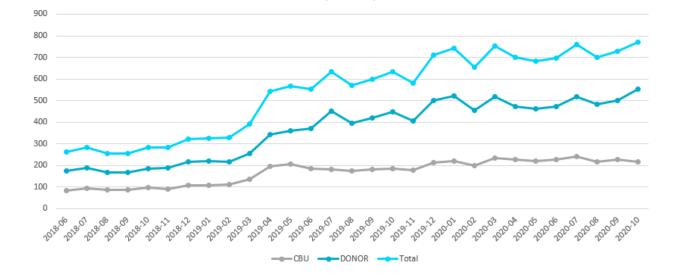
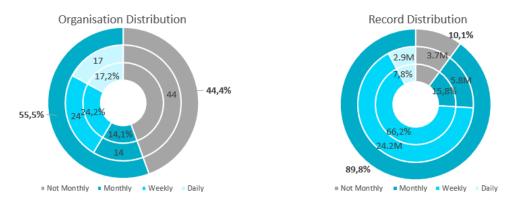



Figure 8. Monthly data upload track chart for CBU, Donor and Total from 2018-2020

Monthly Data Upload

D1.1

Figure 9. The Upload Frequency Distribution by Organisation and Record (DONOR/CBU) in 2019

Figure 10. The Upload Frequency Distribution by Organisation and Record (DONOR/CBU) in 2020

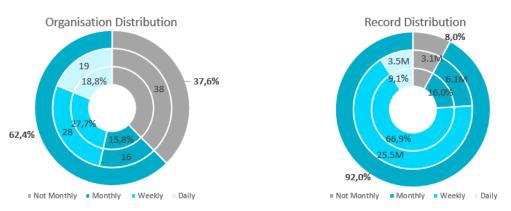


Figure 10 shows that in 2020, there were 37.6% of WMDA member organisations that did not achieve the WMDA requirements, but with an 8% decrease compared to 2019, visualised in Figure 9. WMDA is aware that most of those are CBBs do not have many changes in their inventory, therefore the need to upload their data is not high.

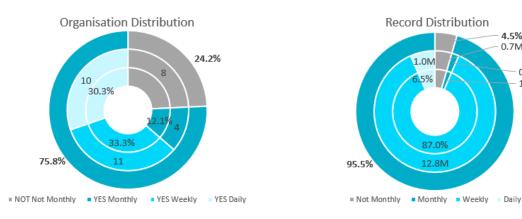
The overall record upload frequency has increased by 2% and currently about 92% of records are now uploaded in compliance with the WMDA Standards, with some being monthly (16.0%), the majority being uploaded weekly (66.9%), and some even daily (9.1%).

In the increase of the daily uploads, WMDA sees the significant benefit of the differential upload. There are currently 4 organisations that moved to Differential Uploads. WMDA promotes Differential Uploads for organisations that have more than 100,000 records or weekly changes with more than 100 records. Statistics on the size distribution of organisations that upload at least monthly can be found in the statistic of the ALLDIFF project provided in Figure 2.

For WMDA EU members, the upload frequency is as provided in

organisations moved to daily differential upload.

Figure 11 and Figure 12. Majority of the EU members are upload in weekly and daily upload. The upload has increased because there are 3



organisations moved to daily differential upload.

Figure 11. The EU Upload Frequency Distribution by Organisation and Records (DONOR and CBU) in 2019

Figure 12. The EU Upload Frequency Distribution by Organisation and Records (DONOR and CBU) in 2020

Density Improvement in 2020

At the end of 2018, WMDA introduced the Density Improvement Plan in 2019. For this plan WMDA identified a first set of data elements with high clinical impact. In 2020, we see the density is continuously improving. Figure 13 shows the average density in the end of 2018, end of 2019 and in 2020 up until the moment of writing. Most fields are gradually increasing. Some fields show significant improvement, as for example NMBR TRANS, BANK MANUF ID, CBU SEX, and VOL FRZN.

Some other fields did not show this same change because of known difficulties. DONOR ETHN is almost irrelevant for quite some registries with a lot of mix-blood donors. For these registries the local majority or race is more relevant. For this reason, these registries did not update this variable.

DONOR SEX and BIRTH_DATE are not provided by some big registries because of national data protection laws. WMDA is working with them to investigate any possibilities to improve this situation.

4.5% 0.7M

0.3M

1.9%

Figure 13. Density improvement in 2020

Attention Time	XML Field	Data Type	XML Field Description	Percentage 2018	Percentage 2019	Percentage 2020	Status
2019-02	ETHN	DONOR	Ethnicity	30%	56%	56%	Approved
2019-02	SEX	DONOR	Sex	95%	96%	96%	Approved
2019-02	ABO	DONOR	ABO	38%	43%	46%	Approved
2019-02	BIRTH_DATE	DONOR	Age	95%	96%	97%	Approved
2019-06	CONTACT_DATE	DONOR	Last contact date	33%	36%	37%	Approved
2019-10	ANTI_CMV	DONOR	CMV status	9%	12%	14%	Approved
2019-04	NMBR_TRANS	DONOR	No. of blood transfusions	6%	4%	8%	Approved
2019-02	BANK_MANUF_ID	CBU	Accreditation Status	67%	76%	83%	Approved
2019-02	COLL_DATE	CBU	Collection date	89%	57%	58%	Approved
2019-02	SEX	CBU	Sex	78%	80%	86%	Approved
2019-02	ABO	CBU	ABO	73%	73%	74%	Approved
2019-04	TNC_FRZN	CBU	post processing TNC	92%	98%	99%	Approved
2019-04	CD34PC_FRZN	CBU	Post processing CD34+	69%	73%	75%	Approved
2019-02	ETHN	CBU	Ethnicity	37%	40%	46%	Approved
2019-05	VOL_FRZN	CBU	post processing volume	82%	81%	87%	Approved
2019-09	VIABILITY	CBU	Viability	36%	38%	39%	Approved
2019-10	MNC_FRZN	CBU	post processing MNC	22%	21%	24%	Approved
2019-11	ATT_SEG	CBU	Attached segments	33%	32%	33%	Approved

Table 7 provides the density of the focused fields in the EU versus Non-EU. Please note that not all fields are available with data for both donors and CBUs. A full density comparison report of EU vs non-EU can be found in Appendix 2.

	2019		2020		2019		2020	
	Non-EU	EU	Non-EU	EU	Non-EU	EU	No- EU	EU
		members		members		member		member
Data element	CBU	CBU	CBU	CBU	Donors	Donors	Donors	Donors
ABO	69.2	73.0	71.5	80.0	44.6	51.5	41.0	54.4
ATT_SEG	15.6	15.0	36.4	24.5				
BIRTH_DATE	81.3	100.0	99.1	100.0	91.3	100.0	93.3	100.0
ANK_MANUF_ID	60.7	75.0	85.2	78.8				
CD34PC_FRZN	68.2	80.6	68.4	90.7				
ANTI_CMV	12.0	11.5	4.7	13.9	4.6	16.2	7.2	25.3
COLL_DATE	36.7	33.0	60.2	51,1				
CONTACT_DATE					7.1	24.0	16.1	70.3
ETHN	20.8	29.7	52.8	29.8	35.4	34.0	54.7	59.1
GRID					89.0	94.3	91.7	100
NMBR_TRANS					14.6	35.3	8.4	6.5
SEX	60.8	90.1	83.2	93.0	93.5	100.0	93.4	100.0
TNC_FRZN	98.1	94.3	99.6	99.2				
VIABILITY	16.7	19.7	41.3	32.7				
VOL FRZN	88.4	90.6	84.7	91.0				

Table 7. Density report of EU members VS non-EU members in focused fields in 2019 and 2020

For CBUs, both non-EU and EU members have improved BANK_MANUF_ID, COLL_DATE. EU members were able to improve CD34PC_FRZN significantly compared to non-EU members.

For Donors, both non-EU and EU members did an extraordinary job increasing the density. For CONTACT_DATE, a good value to check the availability of the donor, EU members managed to significantly increase from 24.0% to 70.3%.

Density report per registry Improvement

To gain a better insight into the data quality of individual donor registries and cord blood banks, WMDA provides monthly Data Quality (DQ) reports for both internal and public evaluation and review. This DQ Programme is an initial version of an individual DQ report per organisation provided and distributed by WMDA. The DQ programme was evaluated with the feedback from registries and is officially distributed on 15th of each month starting from April 15th, 2020. Detail information can be found in the public <u>DQ</u> report User Guide.

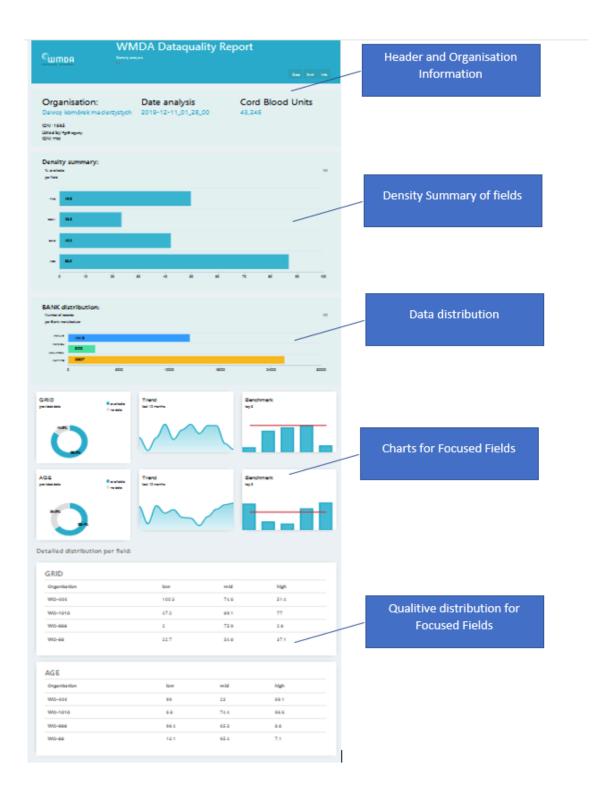
By creating the DQ Programme, WMDA can get a more accurate overview on the Qualitative Distribution report. Figure 14 gives an example of the Qualitative Distribution report for TNC_FRZN, which is a key field for CBU searches. The report not only gives a better overview of the value of the TNC_FRZN, but also shows exactly where values are missing, or values are suspicious. As a result of this report, CBBs have better overview on the quality of their databases and can initiate corrections quicker and easier if necessary. This report is now available for more useful and important fields listed in

Table 8. List of fields that are qualitatively monitored for CBU in DQ density report

Field name	Explanation	Normal Value Range
TNC_FRZN	Total Nucleated Cells in CBU post processing/prior to cryopreservation	50x10 ⁷ to 300x10 ⁷
CD34PC_FRZN	Total number of CD34+ cells (post processing, prior to cryopreservation	1x10 ⁶ to 20x10 ⁶
RED_BC_FRZN	Total number of nucleated red blood cells (post processing, prior to cryopreservation)	1x10 ⁷ to 100x10 ⁷
CFU_FRZN	Total count of colony forming units (post processing, prior to cryopreservation)	1x10 ⁵ to 70x10 ⁵
VOL_FRZN	Total volume frozen (post processing, prior to cryopreservation) in ml	About 25 or 50
VIABILITY	A calculated score based on specific test in % for TNC_FRZN, CD34PC_FRZN or CD45PC_FRZN	80-100

The significant importance of the Data Quality Programme is demonstrated using Figure 14. This report shows registry/CBB upload data for several registries and CBBs. As a result of the report, registries are now able to identify the issues listed below:

- 1. There are 10 records still missing TNC-FRZN from CBB with WO-ID 1111.
- 2. There are 2 records for CBB with WO-ID 2222 with really high TNC-FRNZ in the range of [700-3000], so there might be a mistake in the data.
- 3. There are CBBs that are missing a WO-ID to identify if the cord blood units are listed in an accredited cord blood bank.
- 4. For the CBUs that missing the WO-ID, the quality maybe relative bad as about 600 records with low TNC_FRZN value less than 90.

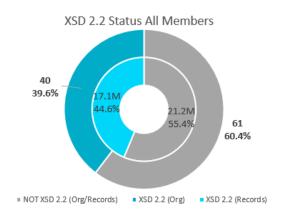

Figure 14 The example of TNC_FRZN Qualitative Distribution report

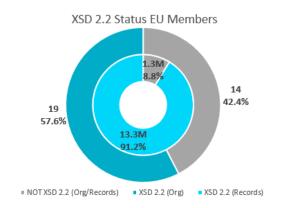
-										
Organisation	[1- 49]	[50- 89]	[90- 124]	[125- 149]	[150- 199]	[200- 249]	[250- 299]	[300- 699]	[700- 3000]	Missing
1111	0	2	2329	3114	3515	1067	281	119	0	10
2222	15	799	3368	2111	2126	599	132	28	2	0
3333	54	1385	3022	1272	981	192	32	8	1	1
Missing	304	330	207	609	351	31	3	1	1	2

TNC_FRZN

Example of data quality report sent out monthly to all member organisations

Deprecated Code


HLA coding used in the data upload is validated by an HLA validation engine. Since the nature of some of these codes is volatile, codes may get deprecated quarterly after a new release of the HLA nomenclature.


In 2019, the data upload service deployed the Deprecated Code handling to provide suggested replacement code of the deprecated code. In 2020, WMDA sees this feature works as expected and is extremely helpful quarterly when there is a new nomenclature release that introduces new deprecated code. In the data upload report, the replacement suggestion will be provided in time. It saves time and effort for the organisation to further check the replacement by their own.

XSD 2.2 End User Usage Status

XSD 2.2 was released on December 16, 2019. After the XSD 2.2 release, WMDA updated the data dictionary application with this latest version.

Figure 15 provides a summary of WMDA members that use XSD 2.2 schema to generate the XML file for data uploads. We can see that only 39.6% organizations in WMDA has currently implemented XSD 2.2, compared to a higher percentage of 57.6% for EU members. Currently 44.6% of all records in WMDA are uploaded using XSD 2.2. 91.2% of records from EU members are updated to use XSD 2.2. Main reason for this is that most big registries have implemented XSD 2.2 already.

Figure 15 XSD 2.2 usage Distribution by Organisation and Records till November 2020 (DONOR and CBU)

3. Project planning for 2021

Several DQ projects from 2020 need further attention in 2021. These are listed in Table 9.

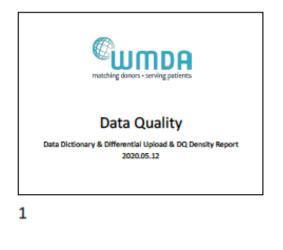
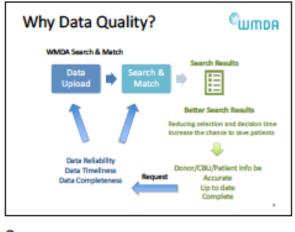
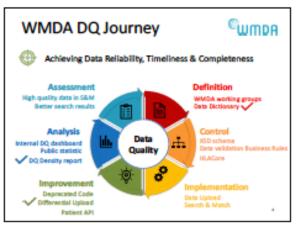
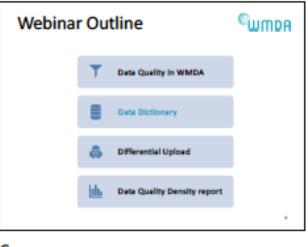

Element	Description	Status
Data Upload to Azure Migration	Migrate the data upload system to Azure cloud service	The testing and staging systems are setup.
Differential upload	Mechanism to push changes instead of full datasets	Only 2 registries that in charge of 4 organizations moved to use differential upload. The promotion of the service started end of 2020.
XSD 2.4	Yearly updated data upload XML schema	Currently, RFC 08 is approved. DD group is working on RFC 07 and 09. A new RFC 10 is in discussion. These changes above are considered to be supported in XSD 2.4.
		As planned, it will be released in Q4, 2021

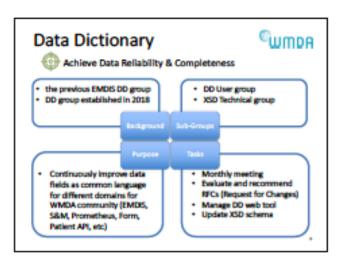
Table 9. Improvement DQ projects 2020 in 2021

New DQ sub-projects

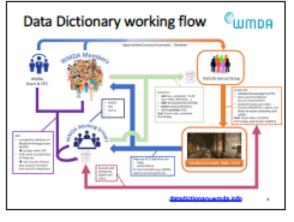

Element	Description	Status
WMDA Centralized monitoring and dashboard system	Handle the internal application and server logging from Azure, and centralized the current separated dashboards and reports	Investigated the technologies, and decide to use Elasticsearch ELK solution

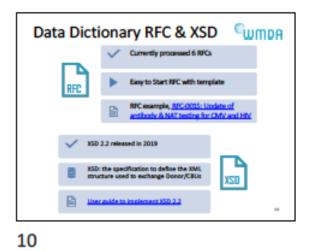




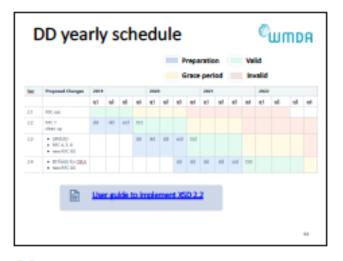


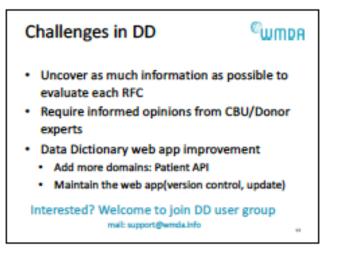
DQ Sub Projects	Deta Charadar Mile(x)
Monthly data uplaced	Tendines
Density Improvement Plan	Completenes
Depresaried Code	Relability
Date uplied Debloard and Statistic Decidored	Data montor / track Purpose
Record Drop Cantrol 32% Rule	Relability
	Completioners
Differential Upland	Timelines
Patient API	Relability
Density report per registry	Data monitor / track Purpose
230 shena party spiele	Completeness Reliability
Date uplied backand enhancement	Tindines

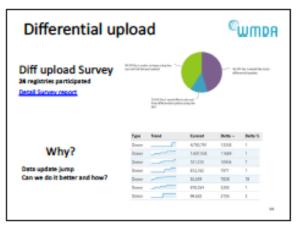


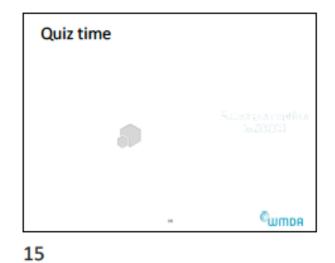


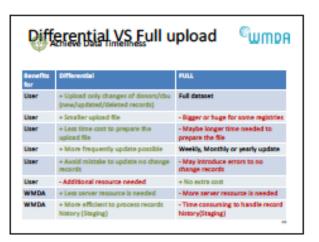
Data Dic	Data Dictionary			
Chair:	Jenna Schurmeier Ying Li (temp)	ABMDR BBMR		
Members:	Andrea Timm Helene Jeanne Lamotte Jürgen Sauter Kim Tohm Simona Pollichieni Zhihong He	ZKRD FGM DKMS NMDP IBMDR WMDA		

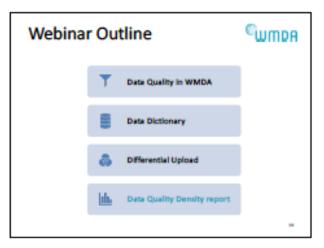








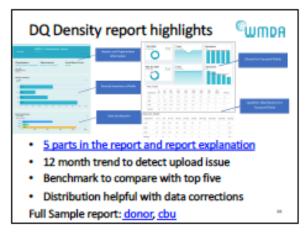

Webina	©umpa		
	T	Data Quality & DQ sub- projects in WMDA	
		Data Dictionary	
	å	Differential Upload	
	b	Data Quality Density report	



Differential upload User guide Cumpa

- Same steps as FULL upload
- DE status is allowed
- Report with new/updated/deleted/rejected
- Refer to the <u>User guide page</u>
- Two options WMDA suggested to prepare the XML files for small dataset (<1000 records)

11


- Microsoft's Excel Developer
- A php script-based XML generator

DQ Density report Data Analysis and Assessment • Report for each listing registry/CBB • Focus on the important fields for search • Organisations can verify the data uploaded to WMDA by comparing to their internal data • May help organisations without data management to check their data quality • By working together, we can improve data for global community

19

Cumba Appendix 2

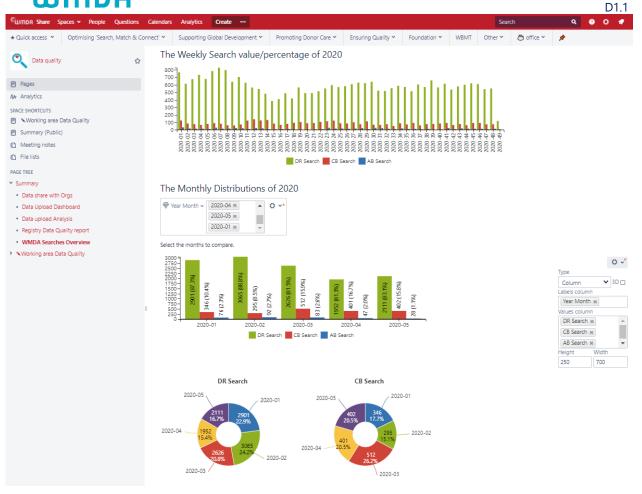
Full density for both Donor and CBU of EU VS Non-EU report up until November 2020. For the data for 2019, please refer to the density from EU Grand 2019 for DQ (<u>https://share.wmda.info/x/gRrkEw</u>).

Density (data available)				
in %	Non-EU	EU member states	Non-EU	EU member states
Data element	Cord Blood Units	Cord Blood Units	Donors	Donors
A1	24.3	52.7	11.9	19.8
A1 A2		46.5	10.4	
	21.3			17.0
ABO	71.5	80.0	41.0	54.4
AL_PLA	2.6	15.7		
AL_RED_BC	0.6	3.8		
AL_SER	0.1	9.0		
ALT	0.0	0.3	0.0	0.8
ANTI_CMV	4.7	13.9	7.2	25.3
ANTI_CMV_DATE	4.7	13.9	7.2	25.3
ANTI_HBC	2.3	21.6	0.0	3.3
ANTI_HBS	0.0	1.6	0.0	0.3
ANTI_HCV	0.5	28.9	0.0	4.1
ANTI_HIV_12	0.5	21.5	0.0	3.8
ANTI_HTLV	2.5	16.6	0.0	1.2
ATT_SEG	36.4	24.5	12.0	19.9
B1	24.2	52.7	11.1	18.3
B2	23.1	49.2		
BACT_CULT	56.7	50.0		
BAG_ID	17.8	16.2		
BAG TYPE	15.3	22.1		
BAGS	19.1	47.2		
BANK_DISTRIB_ID	42.3	78.8		
BANK DISTRIB ID EM				
DIS	1.2	11.2		
BANK_DISTRIB_ID_W				
MDA	42.3	78.8		
BANK_MANUF_ID	85.2	78.8		
BANK_MANUF_ID_EM	00.2	, 6.6		
DIS	7.8	11.2		
BANK_MANUF_ID_W	7.0	11.2		
MDA	85.2	78.8		
BANK_MAT_ID	0.1	1.0		
BIRTH_DATE	99.1	100.0	93.4	100.0
_			1.9	8.2
C1 C2	0.8 0.5	12.0 6.7	1.9	8.2 4.1
CCR5	0.1	10.1	5.4	36.4
CD34PC	0.3	12.2		
CD34PC_FRZN	68.4	90.7		
CFU_FRZN	35.3	37.3	0.0	~ ~
CHAGAS	0.0	4.1	0.0	0.0
CHECKUP_DATE		40.5	0.8	8.4
CMV	4.7	13.9	7.2	25.3
CMV_DATE	4.7	18.3	7.6	25.3
CMV_NAT	0.0	8.6	0.4	0.2
CMV_NAT_DATE	0.0	4.5	0.4	0.2
COLL_DATE	60.2	51.1		
COLL_TYPE			4.1	4.5
CONTACT_DATE			16.1	70.3
CT_COMPLETE_DATE	0.1	9.5		
CT_SMPL_TYPE	0.1	9.5		
DNA_A1	84.6	86.1	91.2	90.7
DNA_A2	79.8	76.9	88.0	81.4
DNA_B1	84.7	86.2	91.2	90.7
DNA_B2	82.3	81.8	89.8	86.6
DNA_C1	39.7	41.8	53.3	80.4

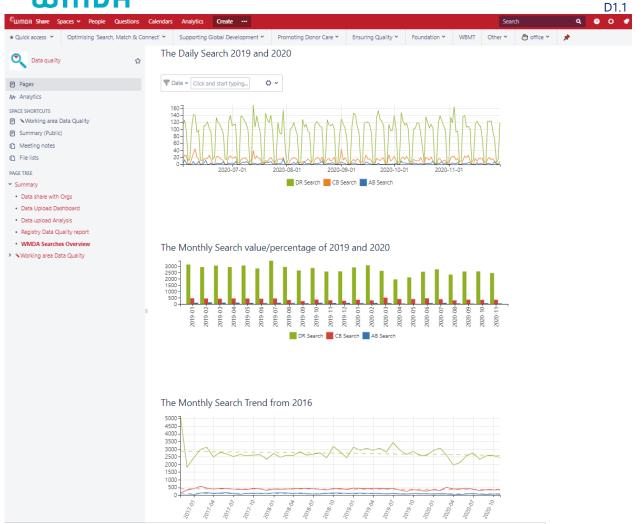
₩ UMDA				D1.1
DNA_C2	38.2	38.8	52.1	74.9
DNA_SMPL	3.4	25.7		
DON_ATTR	33.9	9.7	38.7	65.4
DON_POOL	100.0	100.0	100.0	100.0
DPA11	1.6	2.6	6.7	4.8
DPA12	1.2	1.7	6.3	4.6
DPB11	8.4	7.9	31.7	59.5
DPB12	7.7	6.6	30.7	49.6
DQ1	0.2	5.7	0.8	3.7
DQ2	0.2	4.9	0.6	3.0
DQA11	2.7	3.2	6.9	6.8
DQA12	2.5	2.9	6.7	6.2
DQB11	15.7	31.3	43.4	73.1
DQB12	14.9	27.0	42.1	67.1
DR1	19.6	42.8	4.5	11.8
DR2	18.3	38.9	4.1	10.5
DRB11	90.0	98.6	94.0	94.6
DRB12	86.5	91.5	91.7	88.3
DRB31	10.5	5.0	22.0	17.4
DRB32	2.3	1.3	7.1	4.8
DRB41	8.7	3.4	16.8	12.9
DRB42	1.2	0.8	5.1	2.1
DRB51	6.0	2.3	14.3	10.6
DRB52	1.1	0.7	4.7	1.6
EBV	0.0	9.1	0.0	0.2
ETHN	52.8	29.8	54.7	59.1
FREEZE_DATE	55.0	45.3		
FREEZE_METH	16.0	38.9		
FUNG_CULT	56.7	50.7	01 7	100.0
GRID		24.0	91.7	100.0
HBS_AG	1.4	24.9 12.8	1.1 0.0	4.1 0.7
HBV_NAT	0.3 2.0	21.1	0.0	0.8
HCV_NAT	2.0	21.1		
HEIGHT HEMO_STATUS	47.7	27.2	10.2	1.4
HIV_1_NAT	2.0	19.2	0.0	0.7
HIV_P24	0.5	14.4	0.0	1.2
ID	100.0	100.0	97.7	22.6
KIR_GL	0.0	0.0	0.0	0.0
KIR2DL1	0.0	0.0	3.3	28.3
KIR2DL2	0.0	0.0	3.3	28.3
KIR2DL3	0.0	0.0	3.3	28.3
KIR2DL4	0.0	0.0	3.3	28.3
KIR2DL5A	0.0	0.0	3.3	28.3
KIR2DL5B	0.0	0.0	3.3	28.3
KIR2DP1	0.0	0.0	0.0	28.3
KIR2DS1	0.0	0.0	3.3	28.3
KIR2DS2	0.0	0.0	3.3	28.3
KIR2DS3	0.0	0.0	3.3	28.3
KIR2DS4	0.0	0.0	3.3	28.3
KIR2DS5	0.0	0.0	3.3	28.3
KIR3DL1	0.0	0.0	3.3	28.3
KIR3DL2	0.0	0.0	3.3	28.3
KIR3DL3	0.0	0.0	3.3	28.3
KIR3DP1	0.0	0.0	3.3	28.3
KIR3DS1	0.0	0.0	3.3	28.3
LOCAL_ID	24.7	43.1		
MAT_A1	0.0	2.8		
MAT_A2	0.0	2.5		
MAT_AL_PLA	2.5	12.8		
MAT_AL_SER	0.1	14.2		
MAT_ALT	0.0	1.1		
MAT_ANTI_CMV	30.1	39.2		
MAT_ANTI_CMV_DATE	13.5	6.1 40.6		
MAT_ANTI_HBC	16.8 0.0	2.6		
MAT_ANTI_HBS	0.0	2.0		

MAT_ANT_INU_12 45.7 53.6 MAT_ANT_INTU_12 135.5 50.4 MAT_ANT_INTU 45.1 30.1 MAT_SE 0.0 2.8 MAT_CANT_INTU 45.1 30.1 MAT_CANCAS 2.4 4.4 MAT_CANCAS 2.4.7 4.4 MAT_CANCAS 2.4.7 4.4 MAT_COMAGNS 2.5 8.3 MAT_ONA,A2 2.5 7.7 MAT_ONA,A2 2.5 7.9 MAT_ONA,A2 1.2 2.2 MAT_ONA,C1 1.2 2.0 MAT_ONA,C2 1.2 2.0 MAT_ONA,C1 0.0 0.0 MAT_OOLA 0.0 0.0 MAT_OOLA 0.0 0.0 MAT_OOLA 0.0<	WMDA				D1.1
MAT_NNT_HV_12 19.5 50.4 MAT_ANT_HIV 45.1 30.1 MAT_S 0.0 2.8 MAT_C1 0.0 0.8 MAT_C2 0.0 0.6 MAT_C3 0.0 0.8 MAT_C4 0.0 0.8 MAT_C4 0.0 0.2 MAT_CMW_DATE 0.0 0.2 MAT_CMW_DATE 0.0 0.2 MAT_CMM_ATAT_DATE 0.0 0.2 MAT_CMM_ATAT_DATE 0.0 0.2 MAT_CMM_ATAT_DATE 0.0 0.2 MAT_DNA,B1 2.5 7.9 MAT_DNA,B1 0.0 0.0 MAT_DATA,C2 1.2 2.0 MAT_DATA,C2 1.2 2.0 MAT_DATA,C3 0.0 0.0 MAT_DATA,C4 1.2 2.5 MAT_DATA,C2 1.2 2.0 MAT_DATA,C3 0.0 0.0 MAT_DATA,C4 1.2 2.4 MAT_DATA,C4 0.0	MAT ANTI HCV	46.7	53.6		2
MAT_BAT_PITUV 45.1 30.1 MAT_BA 0.0 2.8 MAT_CL 0.0 0.8 MAT_CAS 2.47 4.4 MAT_CAGAS 2.47 4.4 MAT_CAGAS 2.47 4.4 MAT_CAW 30.4 39.2 MAT_CMUPATE 13.5 6.1 MAT_CMUPATE 0.0 0.2 MAT_CMUPATE 0.0 0.2 MAT_CMUPATE 0.0 0.2 MAT_CMUPATE 0.0 0.2 MAT_CMUPATE 1.5 8.3 MAT_ONLAL 2.5 8.3 MAT_ONLAL 2.5 8.3 MAT_ONLAL 0.0 0.0 MAT_ONLAL 0.0 0.0 MAT_ONLAL 0.0 0.0 MAT_ONLAL MAT_ONLAL 0.0 0.0 MAT_ONLAL MAT_ORL 0.0 0.0 0.0 MAT_ORL 0.0 0.0 MAT_ORL MAT_ORL 0.0 0.0 <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
MAT_91 0.0 2.8 MAT_92 0.0 2.7 MAT_C1 0.0 0.8 MAT_C2 0.0 0.6 MAT_CW 30.4 39.2 MAT_CW 30.4 39.2 MAT_CW_MAT 0.0 0.0 MAT_CMV_MAT 0.0 0.0 MAT_CMV_MAT 0.0 0.0 MAT_CMV_MAT 0.0 0.0 MAT_DNA,A1 2.5 8.3 MAT_DNA,R2 2.5 7.9 MAT_DNA,R2 1.2 2.0 MAT_DNA,R2 0.0 0.0 MAT_DNA 0.0 0.0 MAT_OBL 0.0 0.0 MAT_OBL 0.0 0.0 MAT_OBL 0.0 0.0 MAT_					
MAT_C2 0.0 2.7 MAT_C4 0.0 0.6 MAT_C42 0.0 0.6 MAT_C42 0.0 0.6 MAT_C42 0.0 0.6 MAT_C42 0.0 0.6 MAT_CMV_DATE 13.5 6.1 MAT_CMV_NAT 0.0 0.2 MAT_CMV_NATA 0.0 0.0 MAT_CMA_A1 2.5 8.3 MAT_DAA_A2 2.5 7.7 MAT_DAA_A2 2.5 7.3 MAT_DAA_A1 2.5 8.3 MAT_DAA_B1 2.5 7.3 MAT_DAA_C1 1.1 2.4 MAT_DAA_C1 0.0 0.0 MAT_DAA_C1 0.0 0.0 MAT_DAA					
MAT_CI 0.0 0.8 MAT_CAL 0.0 0.6 MAT_CARAGAS 24.7 4.4 MAT_CMV 30.4 30.2 MAT_CMV_NATE 13.5 6.1 MAT_CMV_NAT 0.0 0.2 MAT_CMV_NAT_AL 2.5 8.3 MAT_ONA_AL 2.5 8.3 MAT_ONA_AL 2.5 7.9 MAT_ONA_CL 1.2 2.2 MAT_ONA_CL 1.2 2.1 MAT_ONA_D2 1.2 2.0 MAT_ONA_D2 0.0 0.0 MAT_ONA_D2 0.2 0.4 MAT_ONA_D2 1.2 2.0 MAT_ONA_D2 0.0 0.0 MAT_ONA_D2 0.0 0.0 MAT_ONA 0.0 0.0					
MAT_CRASS 24.7 4.4 MAT_CRASS 24.7 4.4 MAT_CRV 30.4 39.2 MAT_CMV_DATE 13.5 6.1 MAT_CMV_NAT 0.0 0.2 MAT_CMV_NAT 0.0 0.0 MAT_CMA_AL 2.5 8.3 MAT_ONA_A2 2.5 7.7 MAT_ONA_B1 2.5 8.3 MAT_ONA_C2 1.2 2.0 MAT_ONA_C1 1.2 2.0 MAT_ONA_C2 1.2 2.0 MAT_OPAI2 0.0 0.0					
MAT_CMV 30.4 39.2 MAT_CMV_DATE 13.5 6.1 MAT_CMV_NAT 0.0 0.2 MAT_CMV_NAT 0.0 0.0 MAT_DNA_AA 2.5 8.3 MAT_DNA_AB 2.5 8.3 MAT_DNA_AC 2.5 7.7 MAT_DNA_B1 2.5 8.3 MAT_DNA_B2 2.5 7.9 MAT_DNA_C1 1.2 2.2 MAT_DNA_C2 1.2 2.0 MAT_PAL 0.0 0.0 MAT_POL	_				
MAT_CWV_DATE 35.4 6.1 MAT_CWV_DATE 13.5 6.1 MAT_CWV_NAT 0.0 0.2 MAT_CWV_NATA 0.0 0.0 MAT_ONA_A1 2.5 8.3 MAT_ONA_P2 2.5 7.7 MAT_ONA_B1 2.5 8.3 MAT_ONA_C2 1.2 2.0 MAT_ONA_C2 1.2 2.0 MAT_OPAIL 0.0 0.0					
MAT_COV_DATE 135 6.1 MAT_COV_NAT_DATE 0.0 0.0 MAT_DAA_A1 2.5 8.3 MAT_DAA_A2 2.5 7.7 MAT_DAA_A2 2.5 7.9 MAT_DAA_B2 2.5 7.9 MAT_DAA_C1 1.2 2.2 MAT_DAA 0.0 0.0 MAT_DAA 0.0 0.0 MAT_DPA1 0.0 0.0 MAT_DPB12 0.1 0.6 MAT_DPB12 0.1 0.6 MAT_DCA1 0.0 0.0 MAT_DCA1 0.0 0.0 MAT_DCA1 0.0 0.0 MAT_DCA2 0.0 0.0	_				
MAT.COV.NAT 0.0 0.2 MAT.COV.NAT.DATE 0.0 0.0 MAT.DNA.A1 2.5 8.3 MAT.DNA.A2 2.5 7.7 MAT.DNA.B1 2.5 8.3 MAT.DNA.B2 2.5 7.9 MAT.DNA.C1 1.2 2.0 MAT.DNA.C2 1.2 2.0 MAT.DPA1 0.0 0.0 MAT.DPA12 0.0 0.0 MAT.DPA10 0.0 0.0 MAT.DPA10 0.0 0.0 <					
MAT_CONV_AAT_DATE 0.0 0.0 MAT_DNA_A2 2.5 8.3 MAT_DNA_B2 2.5 7.7 MAT_DNA_B2 2.5 7.9 MAT_DNA_B2 2.5 7.9 MAT_DNA_C1 1.2 2.2 MAT_DNA_C2 1.2 2.0 MAT_DPA12 0.0 0.0 MAT_DPA12 0.1 0.6 MAT_DPA12 0.1 0.6 MAT_DOL 0.0 1.1 MAT_DOL 0.0 1.0 MAT_DOL 0.0 0.0 MAT_DBAS1 0.0 0.0 MAT_DBAS2 0.0 0.0 MAT_DBAS2 0.0 0.0 MAT_					
MAT_DNA_A2 2.5 8.3 MAT_DNA_A2 2.5 7.7 MAT_DNA_B1 2.5 7.9 MAT_DNA_C1 1.2 2.0 MAT_DAAC2 1.2 2.0 MAT_DPA1 0.0 0.0 MAT_DPA1 0.0 2.7 MAT_DPA1 0.0 2.7 MAT_DPA1 0.0 0.0 MAT_DPA1 0.0 0.0 MAT_DPA1 0.0 0.0 MAT_DPA1 0.0 0.0 MAT_DPA2					
MAT_DNA_A2 2.5 7.7 MAT_DNA_B1 2.5 8.3 MAT_DNA_B2 2.5 7.9 MAT_DNA_C1 1.2 2.0 MAT_DNA_C2 1.2 2.0 MAT_DPA1 0.0 0.0 MAT_DPA12 0.0 0.0 MAT_DPA12 0.0 0.0 MAT_DPA12 0.0 0.0 MAT_DPA12 0.0 0.1 MAT_DOL1 0.0 1.0 MAT_DOL2 0.0 0.0 MAT_DOL1 0.0 0.0 MAT_DOL2 0.0 2.4 MAT_DRB1 0.0 0.0 MAT_DRB1 0.0 0.0 MAT_DRB3 0.0 0.0 MAT_DRB4 0.0 0.0 MAT_DRB3 0.0 0.0 MAT_DRB4					
MAT_DNA_B1 2.5 8.3 MAT_DNA_C1 1.2 2.5 MAT_DNA_C2 1.2 2.0 MAT_DPA12 0.0 0.0 MAT_DPA12 0.1 0.8 MAT_DPA12 0.1 0.8 MAT_DPA12 0.1 0.8 MAT_DPA12 0.1 0.6 MAT_DAC2 1.1 0.6 MAT_DC3 0.0 1.1 MAT_DC4 0.0 0.0 MAT_DC3 0.1 0.6 MAT_DC3 0.0 0.0 MAT_DC3 0.0 0.0 MAT_DC3 0.2 1.1 MAT_DC3 0.0 0.0 MAT_DC4 0.0 0.0 MAT_DC4 0.0 0.0 MAT_DC4 0.0 0.0 MAT_DC4					
MAT_DNA_62 2.5 7.9 MAT_DNA_C1 1.2 2.0 MAT_DPA12 0.0 0.0 MAT_DPA11 0.1 0.8 MAT_DPA12 0.1 0.6 MAT_DPA11 0.1 0.8 MAT_DPA12 0.1 0.6 MAT_DAC2 0.0 1.0 MAT_DC3 0.0 0.0 MAT_DC4 0.0 0.0 MAT_DC3 0.0 0.0 MAT_DC4 0.0 0.0 MAT_DC3 0.0 0.0 MAT_DC4 0.0 2.7 MAT_DC5 0.0 2.4 MAT_DC5 0.0 2.4 MAT_DR51 0.0 0.0 MAT_DR51 0.0 0.0 MAT_DR52 0.0 0.0 MAT_DR51 0.0 0.0 MAT_DR52 0.0 0.0 MAT_DR53 0.0 0.0 MAT_DR51 0.0 0.0 MAT_PR51					
MAT_DNA_C1 1.2 2.2 MAT_DPA1 0.0 0.0 MAT_DPA11 0.0 0.0 MAT_DPB11 0.1 0.8 MAT_DPB12 0.0 1.1 MAT_DP31 0.0 1.1 MAT_DR12 0.0 1.0 MAT_DR11 0.0 0.0 MAT_DR22 0.0 1.0 MAT_DR31 0.0 0.0 MAT_DR31 0.0 0.0 MAT_DR31 0.2 2.1 MAT_DR31 0.2 2.7 MAT_DR31 0.2 2.4 MAT_DR31 2.5 4.6 MAT_DR31 0.0 0.0 MAT_DR31 0.0 0.0 MAT_DR31 0.0 0.0 MAT_DR31 0.0 0.0 MAT_DR32	MAT_DNA_B1				
MAT_DRAI_C2 1.2 2.0 MAT_DR11 0.0 0.0 MAT_DPB12 0.1 0.8 MAT_DPB12 0.1 0.6 MAT_DQ1 0.0 1.1 MAT_DQ2 0.0 1.0 MAT_DQ3 0.0 1.0 MAT_DQ31 0.0 0.0 MAT_DQ31 0.0 0.0 MAT_DQ31 0.0 0.0 MAT_DQ31 0.0 2.1 MAT_DR32 0.0 0.0 MAT_DR32 0.0 2.4 MAT_DR32 0.0 0.0 MAT_DR32 0.0 0.0 MAT_DR32 0.0 0.0 MAT_DR32 0.0 0.0 MAT_DR43 0.0 0.0 MAT_DR44 1.1 1.6 MAT_DR45	MAT_DNA_B2	2.5	7.9		
MAT_DPA1 0.0 0.0 MAT_DPB12 0.0 0.0 MAT_DPB12 0.1 0.8 MAT_DPB12 0.0 1.1 MAT_DQ2 0.0 1.0 MAT_DQ3 0.0 0.0 MAT_DQ41 0.0 0.0 MAT_DQ51 0.0 0.0 MAT_DQ51 0.2 1.1 MAT_DQ611 0.2 2.1 MAT_DR12 0.0 2.7 MAT_DR13 0.0 2.7 MAT_DR14 0.0 0.0 MAT_DR152 2.4 4.2 MAT_DR13 0.0 0.0 MAT_DR14 0.0 0.0 MAT_DR152 0.0 0.0 MAT_DR153 0.0 0.0 MAT_DR144 0.0 0.0 MAT_DR152 0.0 0.0 MAT_DR153 0.0 0.0 MAT_DR540 0.0 0.0 MAT_DR351 0.0 0.0 MAT_HEV_NAT<	MAT_DNA_C1	1.2	2.2		
MAT_DPR12 0.0 0.0 MAT_DPR12 0.1 0.6 MAT_DPB12 0.0 1.1 MAT_DQA 0.0 1.1 MAT_DQA1 0.0 0.0 MAT_DQA11 0.0 0.0 MAT_DQA12 0.0 0.0 MAT_DQB11 0.2 2.1 MAT_DR12 0.0 2.4 MAT_DR13 0.0 2.4 MAT_DR14 0.0 0.0 MAT_DR15 2.5 4.6 MAT_DR14 0.0 0.0 MAT_DR15 2.5 4.6 MAT_DR14 0.0 0.0 MAT_DR15 0.0 0.0 MAT_DR16 1.1.5 2.1 MAT_HONAT 1.6.2 35.4 MAT_UDR3 0.0 0.0 MAT_PDR1 <th>MAT_DNA_C2</th> <th>1.2</th> <th>2.0</th> <th></th> <th></th>	MAT_DNA_C2	1.2	2.0		
MAT_DPB11 0.1 0.8 MAT_DPB12 0.1 0.6 MAT_DQ1 0.0 1.1 MAT_DQ2 0.0 1.0 MAT_DQ11 0.0 0.0 MAT_DQ212 0.0 0.0 MAT_DQ312 0.2 1.9 MAT_DR2 0.0 2.7 MAT_DR3 0.0 2.7 MAT_DR3 0.0 2.7 MAT_DR31 0.0 0.0 MAT_DR831 0.0 0.0 MAT_DR832 0.0 0.0 MAT_DR832 0.0 0.0 MAT_DR842 0.0 0.0 MAT_DR852 0.0 0.0 MAT_DR852 0.0 0.0 MAT_DR852 0.0 0.0 MAT_DR852 0.0 0.0 MAT_HBV_NAT 16.7 37.1 MAT_HV_PX4 6.1 11.6 MAT_HS_KG 17.3 5.3 MAT_HS_VAT 16.7 37.1 M	MAT_DPA11	0.0	0.0		
MAT_DP12 0.1 0.6 MAT_DQ1 0.0 1.1 MAT_DQ2 0.0 1.0 MAT_DQ1 0.0 0.0 MAT_DQ1 0.0 2.1 MAT_DR1 0.0 2.7 MAT_DR2 0.0 2.4 MAT_DR31 0.0 0.0 MAT_DR811 2.5 4.6 MAT_DR82 0.0 0.0 MAT_DR831 0.0 0.0 MAT_DR842 0.0 0.0 MAT_DR842 0.0 0.0 MAT_DR852 0.0 0.0 MAT_HBV_NAT 9.0 31.2 MAT_ID 16.2 35.4 MAT_UP 39.2 6.6 MAT_P10 39.2 6.6 MAT_P10 39.1 55.3 MAT_VR0N <	MAT_DPA12	0.0	0.0		
MAT_DQ1 0.0 1.1 MAT_DQ2 0.0 1.0 MAT_DQA11 0.0 0.0 MAT_DQ12 0.0 0.0 MAT_DQ12 0.0 0.0 MAT_DQ12 0.0 0.0 MAT_DR2 0.2 1.9 MAT_DR1 0.0 2.7 MAT_DR31 0.0 0.0 MAT_DR812 2.4 4.6 MAT_DR813 0.0 0.0 MAT_DR814 0.0 0.0 MAT_DR82 0.0 0.0 MAT_DR832 0.0 0.0 MAT_BR44 0.0 0.0 0.0 MAT_DR842 0.0 0.0 0.0 MAT_BR851 0.0 0.0 0.0 MAT_HBS_AG 17.3 60.0 1.1 MAT_HBV_NAT 9.0 31.2 1.1 MAT_HBV_NAT 9.0 30.2 6.6 MAT_PLA_QUANT 2.6 11.7 1.1 MAT_SER_QUANT <	MAT_DPB11	0.1	0.8		
MAT_DQ2 0.0 1.0 MAT_DQA11 0.0 0.0 MAT_DQ12 0.0 0.0 MAT_DQ11 0.2 2.1 MAT_DQ12 0.0 2.7 MAT_DR1 0.0 2.7 MAT_DR1 2.5 4.6 MAT_DR11 2.5 4.6 MAT_DR12 2.4 4.2 MAT_DR13 0.0 0.0 MAT_DR14 0.0 0.0 MAT_DR151 0.0 0.0 MAT_DR52 0.0 0.0 MAT_DR53 0.0 0.0 MAT_BR52 0.0 0.0 MAT_HEV_NAT 9.0 31.2 MAT_HUV_PZ4 6.1 11.6 MAT_HUV_NAT 16.7 37.1 MAT_HUV_PZ4 6.1 11.6 MAT_HUV_PZ4 6.1 11.6 MAT_PB19_NAT 0.0 0.0 MAT_PS2 0.1 32.2 MAT_VNV 25.9 0.7 <t< th=""><th>MAT_DPB12</th><th>0.1</th><th>0.6</th><th></th><th></th></t<>	MAT_DPB12	0.1	0.6		
MAT_DQ2 0.0 1.0 MAT_DQA11 0.0 0.0 MAT_DQ12 0.0 0.0 MAT_DQ11 0.2 2.1 MAT_DQ12 0.0 2.7 MAT_DR1 0.0 2.7 MAT_DR1 2.5 4.6 MAT_DR11 2.5 4.6 MAT_DR12 2.4 4.2 MAT_DR13 0.0 0.0 MAT_DR14 0.0 0.0 MAT_DR151 0.0 0.0 MAT_DR52 0.0 0.0 MAT_DR53 0.0 0.0 MAT_BR52 0.0 0.0 MAT_HEV_NAT 9.0 31.2 MAT_HUV_PZ4 6.1 11.6 MAT_HUV_NAT 16.7 37.1 MAT_HUV_PZ4 6.1 11.6 MAT_HUV_PZ4 6.1 11.6 MAT_PB19_NAT 0.0 0.0 MAT_PS2 0.1 32.2 MAT_VNV 25.9 0.7 <t< th=""><th>_</th><th></th><th></th><th></th><th></th></t<>	_				
MAT_DQA11 0.0 0.0 MAT_DQA12 0.0 0.0 MAT_DQB11 0.2 2.1 MAT_DQB12 0.2 1.9 MAT_DR1 0.0 2.7 MAT_DR2 0.0 2.4 MAT_DR1 2.5 4.6 MAT_DR91 2.4 4.2 MAT_DR92 0.0 0.0 MAT_DR92 0.0 0.0 MAT_DR93 0.0 0.0 MAT_DR93 0.0 0.0 MAT_DR93 0.0 0.0 MAT_DR94 0.0 0.0 MAT_DR951 0.0 0.0 MAT_HUS_NAT 9.0 31.2 MAT_HUS_NAT 9.0 31.2 MAT_HU_NAT 16.7 37.1 MAT_PLO_NAT 9.0 0.0 MAT_PLO_NAT 16.7 37.1 MAT_PLO_NAT 16.7 37.1 MAT_PLA_QUANT 1.1 1.5 82.2 MAT_PLA_QUANT 0.1 13.	_		1.0		
MAT_DQB12 0.0 0.0 MAT_DQB11 0.2 2.1 MAT_DQB12 0.0 2.7 MAT_DR1 0.0 2.7 MAT_DR2 0.0 2.4 MAT_DR31 2.5 4.6 MAT_DR911 2.5 4.6 MAT_DR931 0.0 0.0 MAT_DR931 0.0 0.0 MAT_DR932 0.0 0.0 MAT_DR931 0.0 0.0 MAT_DR932 0.0 0.0 MAT_DR932 0.0 0.0 MAT_DR932 0.0 0.0 MAT_DR942 0.0 0.0 MAT_DR952 0.0 0.0 MAT_HBV_NAT 9.0 31.2 MAT_HV_NAT 16.2 35.4 MAT_HV_NAT 16.2 35.4 MAT_PB19_NAT 0.0 0.0 MAT_PB19_NAT 0.0 0.0 MAT_PB10 30.1 55.3 MAT_TONO 1.1 2.1					
MAT_DQB11 0.2 2.1 MAT_DQB12 0.2 1.9 MAT_DR1 0.0 2.7 MAT_DR2 0.0 2.4 MAT_DR31 2.5 4.6 MAT_DR32 0.0 0.0 MAT_DR51 0.0 0.0 MAT_DR52 0.0 0.0 MAT_HINS_AG 17.3 60.0 MAT_HNAT 9.0 31.2 MAT_HNAT 16.7 37.1 MAT_PAQUANT 16.7 37.1 MAT_PAQUANT 16.6 17.7 MAT_DR3UNAT 9.0 30.2 MAT_PAQUANT 16.7 37.1 MAT_HIN_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SER_QUANT 0.1 15.5 <th></th> <th></th> <th></th> <th></th> <th></th>					
MAT_OQB12 0.2 1.9 MAT_OR1 0.0 2.7 MAT_OR2 0.0 2.4 MAT_ORB11 2.5 4.6 MAT_ORB21 2.4 4.2 MAT_ORB31 0.0 0.0 MAT_ORB31 0.0 0.0 MAT_ORB41 0.0 0.0 MAT_ORB41 0.0 0.0 MAT_ORB51 0.0 0.0 MAT_ORB52 0.0 0.0 MAT_HBV_NAT 9.0 31.2 MAT_HV_VAT 16.7 37.1 MAT_HV_VAT 16.7 37.1 MAT_PB12, NAT 0.0 0.0 MAT_PB2, QUANT 16.2 35.4 MAT_PB4, QUANT 16.7 37.1 MAT_PB4, QUANT 16.6 1.1 MAT_PB4, QUANT 16.6 1.1 MAT_PB4, QUANT 0.0 0.0 MAT_PS1, QUANT 2.6 1.1.7 MAT_S1, QUANT 2.6 1.1.7 MAT_S1.1 2.2.8 <th></th> <th></th> <th></th> <th></th> <th></th>					
MAT_OR1 0.0 2.7 MAT_OR2 0.0 2.4 MAT_ORB11 2.5 4.6 MAT_ORB32 2.4 4.2 MAT_ORB31 0.0 0.0 MAT_ORB32 0.0 0.0 MAT_ORB41 0.0 0.0 MAT_ORB42 0.0 0.0 MAT_ORB51 0.0 0.0 MAT_ORB52 0.0 0.0 MAT_ORB54 0.0 0.0 MAT_NDR851 0.0 0.0 MAT_HUS_NAT 9.0 31.2 MAT_HUV_NAT 16.7 37.1 MAT_HUV_P24 6.1 11.6 MAT_ID 39.2 6.6 MAT_PB19_NAT 0.0 0.0 MAT_PB19_NAT 0.0 0.0 MAT_SER_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_PR0 11.1 22.8 MAT_NWN 25.9 0.7 MAT_FRN 6.5 0.4					
MAT_OR2 0.0 2.4 MAT_ORB12 2.4 4.2 MAT_ORB32 0.0 0.0 MAT_ORB31 0.0 0.0 MAT_ORB32 0.0 0.0 MAT_ORB41 0.0 0.0 MAT_ORB51 0.0 0.0 MAT_ORB52 0.0 0.0 MAT_ORB53 0.0 0.0 MAT_REV 0.0 0.0 MAT_NORS52 0.0 0.0 MAT_HSV_NAT 9.0 31.2 MAT_HSAG 17.3 60.0 MAT_HAV_NAT 16.2 35.4 MAT_IO 39.2 6.6 MAT_PLA_QUANT 0.1 13.1 MAT_SER_QUANT 0.1 13.1 MAT_SER_QUANT 0.1 13.1 MAT_PLA_QUANT 2.6 11.5 82.2 NMBR_MAR 11.5 82.2 NMMR_PREG 0.0 0.4 2.1 NMMR_PRES 11.5 82.2 NMBR_MARR 1.1.5 82.2 NMBR_PRES 0.0 0.5 <th>_</th> <th></th> <th></th> <th></th> <th></th>	_				
MAT_DRB11 2.5 4.6 MAT_DRB12 2.4 4.2 MAT_DRB11 0.0 0.0 MAT_DRB22 0.0 0.0 MAT_DRB32 0.0 0.0 MAT_DRB42 0.0 0.0 MAT_DRB52 0.0 0.0 MAT_DRB52 0.0 0.0 MAT_DRB52 0.0 0.0 MAT_BRSAG 17.3 60.0 MAT_HBV_NAT 9.0 31.2 MAT_HV_NAT 16.7 37.1 MAT_HV_P24 6.1 11.6 MAT_PLAQUANT 2.6 11.7 MAT_SER_QUANT 0.0 0.0 MAT_SER_QUANT 2.6 11.7 MAT_SER_QUANT 2.6 11.7 MAT_SER_QUANT 1.1 2.2.8 MAT_WWN 25.9 0.7 MMC_RRN 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_PREG 0.1 1.5 PROT_METH_TYPE 2.1 1					
MAT_DRB12 2.4 4.2 MAT_DRB31 0.0 0.0 MAT_DRB32 0.0 0.0 MAT_DRB41 0.0 0.0 MAT_DRB51 0.0 0.0 MAT_RB51 0.0 0.0 MAT_RB51 0.0 0.0 MAT_RB51 0.0 0.0 MAT_RB5AG 17.3 60.0 MAT_HV_NAT 9.0 31.2 MAT_HV_NAT 16.7 37.1 MAT_HV_NAT 16.2 35.4 MAT_PB19_NAT 0.0 0.0 MAT_PB2_QUANT 1.6 11.6 MAT_PB19_NAT 0.0 0.0 MAT_SER_QUANT 0.1 13.1 MAT_SER_QUANT 0.1 13.1 MAT_SYPHILS 30.1 56.3 MAT_WV 25.9 0.7 MMR_MRR 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_PREG 0.4 2.1 OHAS_PREG 0.0 0.5 PRO_METH_TYPE 27.3 46.4 PRO_METH_TY					
MAT_DR831 0.0 0.0 MAT_DR832 0.0 0.0 MAT_DR841 0.0 0.0 MAT_DR842 0.0 0.0 MAT_DR852 0.0 0.0 MAT_DR852 0.0 0.0 MAT_DR852 0.0 0.0 MAT_DR852 0.0 0.0 MAT_HSYNAT 9.0 31.2 MAT_HV_NAT 16.7 37.1 MAT_HV_NAT 16.2 35.4 MAT_HV P24 6.1 11.6 MAT_PB19_NAT 0.0 0.0 MAT_PB19_NAT 0.0 0.0 MAT_SER_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SYPHILS 30.1 56.3 MAT_WNV 25.9 0.7 MAT_KRNS 0.4 2.1 NMBR_PREG 0.4 2.1 NMBR_PREG 0.4 2.1 NMBR_PREG 0.0 0.5 PROC_METH 13.7 62.4 PROC_METH_TYPE 27.3 46.4 PROC_METH_	_				
MAT_DR832 0.0 0.0 MAT_DR841 0.0 0.0 MAT_DR851 0.0 0.0 MAT_DR852 0.0 0.0 MAT_RD852 0.0 0.0 MAT_RD853 0.0 0.0 MAT_BS1 0.0 0.0 MAT_BS2 0.0 0.0 MAT_HORS32 0.0 0.0 MAT_BS2 0.0 0.0 MAT_BS2 0.0 0.0 MAT_HOLNAT 16.7 37.1 MAT_HNV_NAT 16.2 35.4 MAT_PL4_QUANT 16.6 1.1 MAT_PL4_QUANT 0.0 0.0 MAT_SPREQUANT 0.1 13.1 MAT_WNV 25.9 0.7 MMC_FRZN 16.9 39.3 MAT_WNV 25.9 0.7 MMR_PREG 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_PREG 0.0 0.5 PRO_MENT 1.5 84. PROC_METH_TYPE 27.3 46. PROC_METH_TYPE <t< th=""><th></th><th></th><th></th><th></th><th></th></t<>					
MAT_DR841 0.0 0.0 MAT_DR842 0.0 0.0 MAT_DR851 0.0 0.0 MAT_BRS2 0.0 0.0 MAT_HS2 0.0 0.0 MAT_HS2 0.0 0.0 MAT_BS2 0.0 0.0 MAT_US2 0.0 17.4 MAT_HS_AG 17.3 60.0 MAT_HV_NAT 16.7 37.1 MAT_HV_P24 6.1 11.6 MAT_D 39.2 6.6 MAT_SER_QUANT 2.6 11.7 MAT_SER_QUANT 0.0 0.0 MAT_SER_QUANT 0.1 13.1 MAT_SER_QUANT 0.1 2.8 MAT_TOXO 1.1 22.8 MAT_WVV 25.9 0.7 MNC_FRZN 16.9 39.3 MMS_PREG 0.4 2.1 NMBR_PRSC 11.5 82.2 NMBR_PREG 0.0 0.5 PROC_METH 0.0 2.5 0.0					
MAT_DR842 0.0 0.0 MAT_DR851 0.0 0.0 MAT_DR852 0.0 0.0 MAT_BRS4 0.0 17.4 MAT_HBS_AG 17.3 60.0 MAT_HBV_NAT 9.0 31.2 MAT_HV_NAT 16.7 37.1 MAT_HV_NAT 16.2 35.4 MAT_HV_P24 6.1 11.6 MAT_PLA_QUANT 2.6 6.6 MAT_PLA_QUANT 2.6 11.7 MAT_SYPHILIS 30.1 56.3 MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_PREG 0.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 0.5 PROC_DATE 51.5 48.5 PROC_METH 13.7 62.4 PROC_METH_TYPE 27.3	_				
MAT_DR851 0.0 0.0 MAT_DR852 0.0 0.0 MAT_BRS2 0.0 0.0 MAT_HS2_AG 17.3 60.0 MAT_HS2_NAT 9.0 31.2 MAT_HCV_NAT 16.7 37.1 MAT_HV_1_NAT 16.7 37.1 MAT_HV_P24 6.1 11.6 MAT_PB19_NAT 0.0 0.0 MAT_PS19_NAT 0.1 13.1 MAT_SER_QUANT 2.6 11.7 MAT_SERQUANT 0.1 13.1 MAT_SERQUANT 0.1 13.1 MAT_TOXO 1.1 22.8 MAT_TOXO 1.1 22.8 MAT_REN 11.5 82.2 NMSC_FRZN 16.9 39.3 NMSC_MARR 11.5 82.2 NMBR_MARR 11.5 82.2 NMBR_TRANS 0.0 0.5 OTH_SNPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PR					
MAT_DRB52 0.0 0.0 MAT_EBV 0.0 17.4 MAT_HBS_AG 17.3 60.0 MAT_HBV_NAT 9.0 31.2 MAT_HV_NAT 16.7 37.1 MAT_HIV_1_NAT 16.2 35.4 MAT_HIV_P24 6.1 11.6 MAT_DB 39.2 6.6 MAT_PB19_NAT 0.0 0.0 MAT_SER_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SYPHILIS 30.1 56.3 MAT_TOXO 1.1 22.8 MMT_WNV 25.9 0.7 MNR_MARR 11.5 82.2 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.0 0.5 PHA_QUANT 2.6 11.5 82.2 NMBR_PREG 0.0 0.5 9 PMOC_METH 3.7 62.4 6.5 OTH_SMPI 2.1 90 9					
MAT_EBV 0.0 17.4 MAT_HBS_AG 17.3 60.0 MAT_HBV_NAT 9.0 31.2 MAT_HCV_INAT 16.7 37.1 MAT_HIV_1_NAT 16.2 35.4 MAT_HIV_P24 6.1 11.6 MAT_B19_NAT 0.0 0.0 MAT_SER_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SVPHILIS 30.1 56.3 MAT_WNV 25.9 0.7 MNG_FRZN 11.5 82.2 NMBR_MAR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 0.0 12.5 0.0 0.5 PIA_QUANT 2.6 11.5 82.2 NMBR_TRANS 0.0 12.5 0.0 0.5 PIA_QUANT 2.6 11.5 82.4 6.5 PROC_METH 13.7 62.4 9 9 PROC_METH 13					
MAT_HBS_AG 17.3 60.0 MAT_HBV_NAT 9.0 31.2 MAT_HCV_NAT 16.7 37.1 MAT_HV_1_NAT 16.7 37.1 MAT_HV_2NAT 16.7 37.1 MAT_HV_P24 6.1 11.6 MAT_D 39.2 6.6 MAT_PLAQUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_MARR 11.5 82.2 NMBR_PREG 0.0 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 90 PB19_NAT 0.0 12.5 0.0 0.5 PLAQUANT 2.6 11.5 8.4 6.5 PROC_METH 13.7 62.4 90 90 PROC_METH 13.7 62.4					
MAT_HBV_NAT 9.0 31.2 MAT_HCV_NAT 16.7 37.1 MAT_HIV_1_NAT 16.2 35.4 MAT_HIV_P24 6.1 11.6 MAT_ID 39.2 6.6 MAT_PLA_QUANT 2.6 11.7 MAT_SYPHILS 30.1 56.3 MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_MARR 11.5 82.2 NMBR_TRANS 0.0 12.5 0.0 0.5 PB19_NAT 0.0 12.5 0.0 0.5 PROC_DATE 51.5 48.5 7 PROC_METH 13.7 62.4 7 PROC_METH_TYPE	_				
MAT_HCY_NAT 16.7 37.1 MAT_HIV_1NAT 16.2 35.4 MAT_HIV_P24 6.1 11.6 MAT_ID 39.2 6.6 MAT_PB19_NAT 0.0 0.0 MAT_SER_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SYPHILIS 30.1 56.3 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PRAG 0.4 2.1 NMBR_PRAG 0.4 2.1 NMBR_TRANS 0.0 12.5 0.0 0.5 PIA_QUANT 2.6 11.5 PRO_C PRO_T PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 PRO_T PRO_T PRO_CDATE 51.5 48.5 PRO_T PRO_T PRO_MOD 47.2 42.5 PRO_MOD 7.2 2.5 RHESUS 71.5 80.0 40.3					
MAT_HIV_1_NAT 16.2 35.4 MAT_HIV_P24 6.1 11.6 MAT_D 39.2 6.6 MAT_PB19_NAT 0.0 0.0 MAT_SER_QUANT 0.1 13.1 MAT_SYPHILIS 30.1 56.3 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 PC PC PROC_DATE 51.5 48.5 PRC PRC_METH_TYPE PRO_MOD 47.2 42.5 RED_BC_FRZN 30.2 10.5 RHESUS 53.9 10.5					
MAT_HIV_P24 6.1 11.6 MAT_ID 39.2 6.6 MAT_PB19_NAT 0.0 0.0 MAT_PLA_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SYPHILIS 30.1 56.3 MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 0.4 2.1 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 PROC_DATE 51.5 48.5 PROC_METH 13.7 62.4 - - - PROC_METH_TYPE 27.3 46.4 - - - PRO_MOD 47.2 42.5 - - - - PRO_MOD 47.2 42.5 - - - - - PRO_MOD 7.5 80.0 40.					
MAT_ID 39.2 6.6 MAT_PB19_NAT 0.0 0.0 MAT_PLA_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SYPHLIS 30.1 56.3 MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 0.4 2.1 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 PROC PROC_METH PROC_DATE 51.5 48.5 PROC_METH 13.7 62.4 PROC_METH 13.7 62.4 PROC_METH PROC_METH PROC_METH S3.7 RED_BC_FRZN 30.2 10.5 RES PROC_METH_TYPE PROC PROC_METH_TYPE PROC PROC_METH_TYPE PROC<					
MAT_PB19_NAT 0.0 0.0 MAT_PLA_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SYPHILIS 30.1 56.3 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 9.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 9.0 9.0 PROC_DATE 51.5 48.5 9.0 0.5 PROC_METH 13.7 62.4 9.0 9.0 PROC_METH 13.7 62.4 9.0 9.0 PROC_METH_TYPE 27.3 46.4 9.0 9.0 PROL_MOD 47.2 42.5 7.5 80.0 40.3 53.9					
MAT_PLA_QUANT 2.6 11.7 MAT_SER_QUANT 0.1 13.1 MAT_SYPHILIS 30.1 56.3 MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 82.2 PROC_DATE 51.5 48.5 7 PROC_METH 13.7 62.4 7 PROD_MOD 47.2 42.5 7 RED_BC_FRZN 30.2 10.5 80.0 40.3 RHESUS 71.5 80.0 40.3 53.9	_				
MAT_SER_QUANT 0.1 13.1 MAT_SYPHILIS 30.1 56.3 MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 48.4 6.5 PROC_DATE 51.5 48.5 48.5 48.5 PROC_METH 13.7 62.4 49.4 49.4 PROD_MOD 47.2 42.5 7.5 7.5 RHESUS 71.5 80.0 40.3 53.9					
MAT_SYPHILIS 30.1 56.3 MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_TRANS 0.4 2.1 OTH_SMPL 2.1 9.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 9.1 9.1 PROC_DATE 51.5 48.5 9.1 9.1 9.1 PROC_METH_TYPE 27.3 46.4 9.1 9.1 9.1 PROD_MOD 47.2 42.5 1.5 53.9 RHESUS 71.5 80.0 40.3 53.9	MAT_PLA_QUANT				
MAT_TOXO 1.1 22.8 MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 PCC_METH PROC_METH 13.7 62.4 PROC_METH_TYPE 27.3 46.4 PROC_METH_TYPE Z7.3 45.4 RED_BC_FRZN 30.2 10.5 S3.9 S3.9					
MAT_WNV 25.9 0.7 MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 11.5 11.5 PROC_DATE 51.5 48.5 48.5 11.5 11.5 PROC_METH 13.7 62.4 11.5		30.1			
MNC_FRZN 16.9 39.3 NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 48.5 PROC_DATE 51.5 48.5	ΜΑΤ_ΤΟΧΟ	1.1	22.8		
NMBR_MARR 11.5 82.2 NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 48.5 PROC_DATE 51.5 48.5	MAT_WNV	25.9	0.7		
NMBR_PBSC 11.5 82.2 NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 48.5	MNC_FRZN	16.9	39.3		
NMBR_PREG 0.4 2.1 NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5	NMBR_MARR			11.5	82.2
NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0	NMBR_PBSC			11.5	82.2
NMBR_TRANS 8.4 6.5 OTH_SMPL 2.1 19.0	_			0.4	
OTH_SMPL 2.1 19.0 PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 7 7 7 PROC_DATE 51.5 48.5 7					6.5
PB19_NAT 0.0 12.5 0.0 0.5 PLA_QUANT 2.6 11.5 7 <th7< th=""> 7 7 <th< th=""><th></th><th>2.1</th><th>19.0</th><th></th><th></th></th<></th7<>		2.1	19.0		
PLA_QUANT 2.6 11.5 PROC_DATE 51.5 48.5 PROC_METH 13.7 62.4 PROC_METH_TYPE 27.3 46.4 PROD_MOD 47.2 42.5 RED_BC_FRZN 30.2 10.5 RHESUS 71.5 80.0 40.3 53.9	-			0.0	0.5
PROC_DATE 51.5 48.5 PROC_METH 13.7 62.4 PROC_METH_TYPE 27.3 46.4 PROD_MOD 47.2 42.5 RED_BC_FRZN 30.2 10.5 RHESUS 71.5 80.0 40.3 53.9					
PROC_METH 13.7 62.4 PROC_METH_TYPE 27.3 46.4 PROD_MOD 47.2 42.5 RED_BC_FRZN 30.2 10.5 RHESUS 71.5 80.0 40.3 53.9					
PROC_METH_TYPE 27.3 46.4 PROD_MOD 47.2 42.5 RED_BC_FRZN 30.2 10.5 RHESUS 71.5 80.0 40.3 53.9	_				
PROD_MOD 47.2 42.5 RED_BC_FRZN 30.2 10.5 RHESUS 71.5 80.0 40.3 53.9					
RED_BC_FRZN 30.2 10.5 RHESUS 71.5 80.0 40.3 53.9					
RHESUS 71.5 80.0 40.3 53.9	_				
				40.2	F2 0
			80.0 0.0	40.3 0.0	
RSV_PAT 0.0 0.0 0.1	NJV_PAI	0.0	0.0	0.0	0.1

				D1.1
SER_QUANT	0.1	8.9		
SEX	83.2	93.0	93.4	100.0
STAT_END_DATE	0.0	0.2	0.1	0.4
STAT_REASON	0.0	0.4	0.0	0.3
STATUS	100.0	100.0	100.0	100.0
SYPHILIS	2.1	22.7	0.0	3.9
TNC	13.6	33.8		
TNC_FRZN	99.6	99.2		
тохо	0.0	11.9	0.0	0.2
VIABILITY	41.3	32.7		
VIABILITY_CELLS	15.8	9.1		
VIABILITY_DATE	12.9	24.7		
VIABILITY_METHOD	41.1	9.0		
VOL	43.2	79.2		
VOL_FRZN	84.7	91.0		
WEIGHT			14.0	4.3
WNV	0.0	0.0	0.0	0.1



Appendix 3


The Search & Match dashboard to monitor the impact of COVID-19. It is available in the member access share page <u>https://share.wmda.info/x/SkuOF</u>.

^C WMDA Share S	paces 🛩 People Questions Cale	endars A	nalytics	reate …								2	earch	٩	0 0 4
🕻 Quick access 💙	Optimising 'Search, Match & Connect	ť 🖌 Su	pporting Glob	al Development '	 Pron 	noting Don	or Care 🛩	Ensuring Q	uality 💙	Foundation \checkmark	WBMT	Other '	🖌 👌 office 🖌	*	
🔍 Data quality	ជ			α ۹ Λγ⊷Ar								🖋 <u>E</u> dit	✿ Save <u>f</u> or later	<u> Watching</u>	≪ <u>S</u> hare
Pages				ches Ove		/									
		Created by 2	Zhihong He, last n	nodified on Oct 15, 20	20										
Analytics		The real ti	me searches ir	Search & Match											
CE SHORTCUTS		Last updat	te time: 2020-'	1-30 22:45:00+0	0										
Norking area		• Yea	rly Summary												
Summary (Public	:)	 The 	Weekly Searc			(i)			ne history p	atients from old sys	tem, and	some of the	em did not perform	searches in new	system.
Meeting notes				h value/percentag ibutions of 2020	e of 2020		User guide	e:							
File lists				2019 and 2020						e range if there is a				- 4 - 4	
SE TREE				ch value/percenta	ge of 2019		• Use	e the chart cont	rol beside e	each chart to chang	e the size	or chart or	the metrics that he	eded.	
Summary			i 2020 Monthly Sear	ch Trend from 20	16										
 Data share with 	Orac			s in the last 3 wee											
 Data share with Data Upload Da 		V	C												
		reariy	Summa	у											
Data upload An		Year	Sum of	Sum of	Sum	Sum	Sum	Sum		Table settings	0	~			
 Registry Data Q 			New Patients	Patient Perform	of DR Search	of CB Search	of AB Search	of Total	Row la						
 WMDA Search 			Added	Search	Search	Startin	bearen	Search	Year	n labels					
Working area Di	sta Quality	2016	21774	7013	6978	473	0	7451		and start typing					
		2017	31587	32279	31797	5008	1368	38173		ated column					
									New	Patients Added ×		*			
		2018	32519	32575	32067	4883	1465	38415	Patie	ent Perform Search	×				
		2019	35326	35355	34917	4594	1220	40731	DR S	Search 😠 CB Sear	$ch \times$	-			
		2020	28322	28265	27904	4126	752	32782		tion type					
		Total	149528	135487	133663	19084	4805	157552	Sum	×					
		Total	145520	135407	133003	15004	4005	137332							
		The W	/eekly Se	arch Trend											
		💎 Year =	= 2020 ×		0 -*										
					-										
		Use the cr	hart control to	adjust the chart s	ize you war	nt									
		1600 -	\sim												
		1400- 1200-	\sim h		~										
		1000-		\mathcal{N}	$- \downarrow$	$\sim \sim$	MY								
		800-													
		600- 400-													
		200-	\sim	~~~		~~~	~~~								
		0- 1	01	0 0	01	07	6								
		2020-01-01	²⁰² 0.02.01 ^{2020.02.01}	^{2020.05.01} ^{2020.05.01} ^{2020.06.01}	2020-08-01	2020-09-01	<050-11-01								
				R Search 📕 CB											
						- ar ancar citi									

WMDA Share Spaces - People	Questions Calendars Analytics	Create ···					Search		۹	0 O	<u> </u>
★ Quick access ➤ Optimising 'Search	, Match & Connect' Y Supporting	Global Development 👻	Promoting Donor Care 🛩	Ensuring Quality 💙	Foundation ¥	WBMT	Other 🛩	💩 office 🛩	*		
୍ଥିଧ୍ୟଲାହନ Search & Match Service 🏾 🏠	Pages / / XML schema files 🏻 🚡	•					습	Save <u>f</u> or later	© <u>W</u> atch	≪ <u>S</u> hare	
Pages	XML schema files Created by Zhihong He, last modified on										
2 Questions	oreated by Ennong ne, last mounted on	100 10, 2020									
W Analytics	Timeline Proposal ready:	XSD public rev	view	Communication p		Release Da	te				1
SPACE SHORTCUTS	🖻 31 Jul 2020	🖄 22 Sep 20	20 - 🖄 22 Oct 2020	Implementation /	testing	Q4,2020 or	r Q1,2021				
Upload Data - Data Schemes				Q4, 2020							
PAGE TREE	Status	• • •	•								
Search & Match Service Public Acc	Preparation	Draft Discussion	Public Implementation review	Release							
> Search & Match Service											
 Upload Data - Data Schemes 	③ The WMDA data-upload pro	duction is now with XS	SD 2.2 supported from 💼 16	6 Dec 2019							
Search & Match Service Data :	WMDA data-upload will still	support XSD 2.1 till 20)21,October.								
How to upload data?	Organizations can upgrade	to XSD 2.2 which will k	e supported till 2022, Octob	per, or plan to update to	o XSD 2.3 after G	21, 2021.					
 XML schema files 	Download XSD version 2.3 :										
XML schema files version 2.	Changes between version 2.3										
XML schema files version :	 Updated version numb Move GRID/ID 	er to 2.3									
XML Pipeline workflow	Change Field Name Kll	R_GL to KIR_GLS_URI									
 How to automate data upload/ 	 Add HLA-E Add MICA and MICB 										
Differential data upload	 XSD schema type nam 	ing optimization									
Frequently Asked Questions (F											
Statistical data and reports	Download XSD versior	12.3 :									
 Data Submission Release Note 	PUBLIC REVIEW										
	The files below are officially approv	ed by the Datadictionar	y Technical XML group (XSD g	roup).							
Business rules Input form XML											

Disclaimer:

"The content of this Deliverable D1.1 represents the views of the author only and is his/her sole responsibility; it cannot be considered to reflect the views of the European Commission and/or the Consumers, Health, Agriculture and Food Executive Agency or any other body of the European Union. The European Commission and the Agency do not accept any responsibility for use that may be made of the information it contains."